Riding the Spiral Waves: Implications of Stellar Migration for the Properties of Galactic Disks

Stars in disks of spiral galaxies are usually assumed to remain roughly at their birth radii. This assumption is built into decades of modeling of the evolution of stellar populations in our own Galaxy and in external systems. We present results from self-consistent high-resolution N-body + smooth particle hydrodynamics simulations of disk formation, in which stars migrate across significant galactocentric distances due to resonant scattering with transient spiral arms, while preserving their circular orbits. We investigate the implications of such migrations for observed stellar populations. Radial migration provides an explanation for the observed flatness and spread in the age-metallicity relation and the relative lack of metal-poor stars in the solar neighborhood. The presence of radial migration also prompts rethinking of interpretations of extragalactic stellar population data, especially for determinations of star formation histories.

[1]  I. Trujillo,et al.  Color Profiles of Spiral Galaxies: Clues on Outer-Disk Formation Scenarios , 2008, 0807.2776.

[2]  M. Haywood Radial mixing and the transition between the thick and thin Galactic discs , 2008, 0805.1822.

[3]  R. Azzollini,et al.  Color Profiles of Disk Galaxies since z ~ 1: Probing Outer Disk Formation Scenarios , 2008, 0804.2336.

[4]  G. Stinson,et al.  Beyond Inside-Out Growth: Formation and Evolution of Disk Outskirts , 2007, 0710.5523.

[5]  H. Ferguson,et al.  Stellar Populations across the NGC 4244 Truncated Galactic Disk , 2007, 0708.0826.

[6]  B. Nordström,et al.  The Geneva-Copenhagen survey of the Solar neighbourhood II. New uvby calibrations and rediscussion of stellar ages, the G dwarf problem, age-metallicity diagram, and heating mechanisms of the disk , 2007, 0707.1891.

[7]  de Jong,et al.  Island Universes: Structure and Evolution of Disk Galaxies , 2006 .

[8]  Laboratoire d'Astrophysique de Marseille,et al.  Specific Star Formation Rate Profiles in Nearby Spiral Galaxies: Quantifying the Inside-Out Formation of Disks , 2006, astro-ph/0612017.

[9]  G. Stinson,et al.  Star formation and feedback in smoothed particle hydrodynamic simulations – I. Isolated galaxies , 2006, astro-ph/0602350.

[10]  J. Stadel,et al.  Angular momentum transport and disc morphology in smoothed particle hydrodynamics simulations of galaxy formation , 2006, astro-ph/0601115.

[11]  Carnegie-Mellon,et al.  A Merger-driven Scenario for Cosmological Disk Galaxy Formation , 2005, astro-ph/0503369.

[12]  W. J. Maciel,et al.  An estimate of the time variation of the abundance gradient from planetary nebulae. II. Comparison with open clusters, cepheids and young objects , 2004, astro-ph/0412252.

[13]  B. Gibson,et al.  The Emergence of the Thick Disk in a Cold Dark Matter Universe , 2004, astro-ph/0405306.

[14]  E. H. Olsen,et al.  The Geneva-Copenhagen survey of the Solar neighbourhood - Ages, metallicities, and kinematic properties of ~14 000 F and G dwarfs , 2004, astro-ph/0405198.

[15]  T. Quinn,et al.  Gasoline: a flexible, parallel implementation of TreeSPH , 2003, astro-ph/0303521.

[16]  Nathan D. Miller,et al.  Metallicities of Old Open Clusters , 2002 .

[17]  J. Binney,et al.  Radial mixing in galactic discs , 2002, astro-ph/0203510.

[18]  A. Dolphin Numerical methods of star formation history measurement and applications to seven dwarf spheroidals , 2001, astro-ph/0112331.

[19]  A. Dekel,et al.  A Universal Angular Momentum Profile for Galactic Halos , 2000, astro-ph/0011001.

[20]  France.,et al.  Chemo-spectrophotometric evolution of spiral galaxies — I. The model and the Milky Way , 1999, astro-ph/9902148.

[21]  G. Carraro,et al.  On the Galactic disc age–metallicity relation , 1997, astro-ph/9707185.

[22]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[23]  C. Chiappini,et al.  The Chemical Evolution of the Galaxy: The Two-Infall Model , 1996, astro-ph/9609199.

[24]  H. Rocha-Pinto,et al.  The metallicity distribution of G dwarfs in the solar neighbourhood , 1995, astro-ph/9510101.

[25]  Carlos S. Frenk,et al.  Galaxy formation through hierarchical clustering , 1991 .

[26]  P. François,et al.  Galactic chemical evolution: abundance gradients of individual elements , 1989 .

[27]  B. Twarog The chemical evolution of the solar neighborhood. II - The age-metallicity relation and the history of star formation in the galactic disk , 1980 .

[28]  R. Larson Models for the Formation of Disc Galaxies , 1976 .

[29]  B. Tinsley Interpretation of the Stellar Metalltcity Distribution , 1975 .

[30]  B. Tinsley Interpretation Of Stellar Metallicity Distribution , 1975 .

[31]  Richard B. Larson,et al.  Dynamical models for the formation and evolution of spherical galaxies , 1973 .

[32]  S. van den Bergh,et al.  The frequency of stars with different metal abundances. , 1962 .

[33]  J. Binney DYNAMICS OF DISKS , 2007 .

[34]  J. Binney,et al.  Spiral heating of galactic discs , 1990 .

[35]  D. Lynden-Bell The Chemical Evolution of the Galaxies , 1974 .