A non-interior implicit smoothing approach to complementarity problems for frictionless contacts

Abstract This paper presents a non-interior point method for solving frictionless contact problems in large deformations, where we solve the problems in an incremental path-following method from warm start. We propose a novel reformulation of the nonlinear complementarity problem, which is based on the smoothed Fischer–Burmeister function but is distinguished from the conventional formulations in the following two particular aspects: (i) the smoothing parameter is considered as an independent variable; (ii) an equality constraint is added so that the smoothing parameter serves as a measure of the residual of the complementarity conditions. The reduced system of nonlinear equations is solved with a conventional Newton method for nonlinear equations from the initial point which is defined by using the solution of the preceding loading stage. Throughout numerical examples it is shown that in many cases the solution can be found within four Newton iterations.

[1]  James V. Burke,et al.  A polynomial time interior–point path–following algorithm for LCP based on Chen–Harker–Kanzow smoothing techniques , 1999, Math. Program..

[2]  Li-Zhi Liao,et al.  A Smoothing Newton Method for General Nonlinear Complementarity Problems , 2000, Comput. Optim. Appl..

[3]  Defeng Sun,et al.  Smoothing Functions and Smoothing Newton Method for Complementarity and Variational Inequality Problems , 2002 .

[4]  Jörg Fliege An Efficient Interior-Point Method for Convex Multicriteria Optimization Problems , 2006, Math. Oper. Res..

[5]  Peter Wriggers,et al.  A new algorithm for numerical solution of 3D elastoplastic contact problems with orthotropic friction law , 2004 .

[6]  P. Alart,et al.  A mixed formulation for frictional contact problems prone to Newton like solution methods , 1991 .

[7]  P. W. Christensen,et al.  Frictional Contact Algorithms Based on Semismooth Newton Methods , 1998 .

[8]  Masao Fukushima,et al.  Smoothing Newton and Quasi-Newton Methods for Mixed Complementarity Problems , 2000, Comput. Optim. Appl..

[9]  Masakazu Kojima,et al.  Global convergence in infeasible-interior-point algorithms , 1994, Math. Program..

[10]  E. Miersemann,et al.  Continuation for parametrized nonlinear variational inequalities , 1989 .

[11]  Duan Li,et al.  A New Path-Following Algorithm for Nonlinear P*Complementarity Problems , 2006, Comput. Optim. Appl..

[12]  Ai Kah Soh,et al.  Non-smooth Nonlinear Equations Methods for Solving 3D Elastoplastic Frictional Contact Problems , 2007 .

[13]  Jacek Gondzio,et al.  Warm start of the primal-dual method applied in the cutting-plane scheme , 1998, Math. Program..

[14]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[15]  G. Björkman Path following and critical points for contact problems , 1992 .

[16]  P. Wriggers,et al.  A method for solving contact problems , 1998 .

[17]  David F. Shanno,et al.  An exact primal–dual penalty method approach to warmstarting interior-point methods for linear programming , 2007, Comput. Optim. Appl..

[18]  Christian Kanzow,et al.  Some Noninterior Continuation Methods for Linear Complementarity Problems , 1996, SIAM J. Matrix Anal. Appl..

[19]  Paul Tseng,et al.  An Infeasible Path-Following Method for Monotone Complementarity Problems , 1997, SIAM J. Optim..

[20]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[21]  M. Crisfield A FAST INCREMENTAL/ITERATIVE SOLUTION PROCEDURE THAT HANDLES "SNAP-THROUGH" , 1981 .

[22]  Zhang Hong-wu,et al.  Non-interior smoothing algorithm for frictional contact problems , 2004 .

[23]  Chen Wanji,et al.  Smoothing Newton method for solving two‐ and three‐dimensional frictional contact problems , 1998 .

[24]  Daniel Ralph,et al.  Smooth SQP Methods for Mathematical Programs with Nonlinear Complementarity Constraints , 1999, SIAM J. Optim..

[25]  Francisco Facchinei,et al.  A Theoretical and Numerical Comparison of Some Semismooth Algorithms for Complementarity Problems , 2000, Comput. Optim. Appl..

[26]  Y. Ye,et al.  Interior-point methods for nonlinear complementarity problems , 1996 .

[27]  Tao Wang,et al.  An interior point potential reduction method for constrained equations , 1996, Math. Program..

[28]  Yu Xia,et al.  A Newton’s method for perturbed second-order cone programs , 2007, Comput. Optim. Appl..

[29]  David F. Shanno,et al.  Interior-point methods for nonconvex nonlinear programming: regularization and warmstarts , 2008, Comput. Optim. Appl..

[30]  Jin-Bao Jian,et al.  A Superlinearly Convergent Implicit Smooth SQP Algorithm for Mathematical Programs with Nonlinear Complementarity Constraints , 2005, Comput. Optim. Appl..

[31]  Anders Forsgren,et al.  On Warm Starts for Interior Methods , 2005, System Modelling and Optimization.

[32]  Makoto Ohsaki,et al.  Contact Analysis of Cable Networks by Using Second-Order Cone Programming , 2005, SIAM J. Sci. Comput..

[33]  Jong-Shi Pang,et al.  Newton's Method for B-Differentiable Equations , 1990, Math. Oper. Res..

[34]  Byung Man Kwak,et al.  Post-buckling analysis of nonfrictional contact problems using linear complementarity formulation , 1995 .

[35]  Xiaojun ChenyMay A Global and Local Superlinear Continuation-Smoothing Method for P0 +R0 and Monotone NCP , 1997 .

[36]  Robert J. Vanderbei,et al.  An Interior-Point Algorithm for Nonconvex Nonlinear Programming , 1999, Comput. Optim. Appl..

[37]  Peter W. Christensen,et al.  A semi-smooth newton method for elasto-plastic contact problems , 2002 .

[38]  Hiroshi Yamashita,et al.  A Primal-Dual Exterior Point Method for Nonlinear Optimization , 2010, SIAM J. Optim..

[39]  Sandra Pieraccini,et al.  Global Newton-type methods and semismooth reformulations for NCP , 2003 .

[40]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .

[41]  Byung Man Kwak,et al.  POST‐BUCKLING ANALYSIS WITH FRICTIONAL CONTACTS COMBINING COMPLEMENTARITY RELATIONS AND AN ARC‐LENGTH METHOD , 1996 .

[42]  Peter Wriggers,et al.  Computational Contact Mechanics , 2002 .

[43]  Yiju Wang,et al.  A smoothing Newton-type method for generalized nonlinear complementarity problem , 2008 .

[44]  Large displacement dynamic analysis with frictional contact by linear complementarity formulation , 2002 .

[45]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[46]  A. Curnier,et al.  Large deformation frictional contact mechanics: continuum formulation and augmented Lagrangian treatment , 1999 .

[47]  Francisco Facchinei,et al.  A semismooth equation approach to the solution of nonlinear complementarity problems , 1996, Math. Program..

[48]  Yoshihiro Kanno,et al.  Three‐dimensional quasi‐static frictional contact by using second‐order cone linear complementarity problem , 2006 .

[49]  Patrick T. Harker,et al.  Smooth Approximations to Nonlinear Complementarity Problems , 1997, SIAM J. Optim..

[50]  T. Laursen Computational Contact and Impact Mechanics: Fundamentals of Modeling Interfacial Phenomena in Nonlinear Finite Element Analysis , 2002 .

[51]  F. Kozin,et al.  System Modeling and Optimization , 1982 .

[52]  P. W. Christensen,et al.  Formulation and comparison of algorithms for frictional contact problems , 1998 .

[53]  Liqun Qi,et al.  A nonsmooth version of Newton's method , 1993, Math. Program..

[54]  E. Alper Yildirim,et al.  Implementation of warm-start strategies in interior-point methods for linear programming in fixed dimension , 2008, Comput. Optim. Appl..