Provenance, paleo-weathering and -redox signatures of estuarine sediments from Ghana, Gulf of Guinea

[1]  A. Gerdes,et al.  Extensive reworking of Archaean crust within the Birimian terrane in Ghana as revealed by combined zircon U-Pb and Lu-Hf isotopes , 2018 .

[2]  P. Swarzenski,et al.  Geochronology and historical deposition of trace metals in three tropical estuaries in the Gulf of Guinea , 2016 .

[3]  D. Ma,et al.  Implication of the chemical index of alteration as a paleoclimatic perturbation indicator: an example from the lower Neoproterozoic strata of Aksu, Xinjiang, NW China , 2016, Geosciences Journal.

[4]  K. Coale,et al.  Distribution and enrichment of trace metals in marine sediments from the Eastern Equatorial Atlantic, off the Coast of Ghana in the Gulf of Guinea. , 2015, Marine pollution bulletin.

[5]  Yong‐Fei Zheng,et al.  The intensity of chemical weathering: Geochemical constraints from marine detrital sediments of Triassic age in South China , 2015 .

[6]  M. Moniruzzaman,et al.  Geochemical characteristics of Holocene sediments from Chuadanga district, Bangladesh: Implications for weathering, climate, redox conditions, provenance and tectonic setting , 2014, Chinese Journal of Geochemistry.

[7]  M. Mortazavi,et al.  Geochemistry of the Late Jurassic–Early Cretaceous shales (Shurijeh Formation) in the intracontinental Kopet-Dagh Basin, northeastern Iran: implication for provenance, source weathering, and paleoenvironments , 2014, Arabian Journal of Geosciences.

[8]  H. Strauss,et al.  Geochemical Climate Proxies Applied to the Neoproterozoic Glacial Succession on the Yangtze Platform, South China , 2013 .

[9]  M. R. Janardhana,et al.  Geochemistry of Lower Jurassic sandstones of Shemshak Formation, Kerman basin, Central Iran: Provenance, source weathering and tectonic setting , 2012, Journal of the Geological Society of India.

[10]  K. Goldberg,et al.  The applicability of the Chemical Index of Alteration as a paleoclimatic indicator: An example from the Permian of the Paraná Basin, Brazil , 2010 .

[11]  A. Anbar,et al.  Reconstructing Paleoredox Conditions through a Multitracer Approach: The Key to the Past Is the Present , 2009 .

[12]  P. Singh Major, trace and REE geochemistry of the Ganga River sediments: Influence of provenance and sedimentary processes , 2009 .

[13]  Y. Lee,et al.  Geochemistry of the Dalmiapuram Formation of the Uttatur Group (Early Cretaceous), Cauvery basin, southeastern India: Implications on provenance and paleo-redox conditions , 2009 .

[14]  W. Smykatz-kloss,et al.  Geochemistry of late quaternary sediments from Tecocomulco lake, central Mexico: Implication to chemical weathering and provenance , 2008 .

[15]  J. Llamas,et al.  V/Ni ratio as a parameter in palaeoenvironmental characterisation of nonmature medium-crude oils from several Latin American basins , 2008 .

[16]  José Usero,et al.  Fractionation of metals and As in sediments from a biosphere reserve (Odiel salt marshes) affected by acidic mine drainage , 2008, Environmental monitoring and assessment.

[17]  Kazuhiro Suzuki,et al.  Geochemistry and sedimentary petrology of Archean clastic sedimentary rocks at Mt. Goldsworthy, Pilbara Craton, Western Australia: Evidence for the early evolution of continental crust and hydrothermal alteration , 2006 .

[18]  S. Osae,et al.  Provenance and tectonic setting of Late Proterozoic Buem sandstones of southeastern Ghana: Evidence from geochemistry and detrital modes , 2006 .

[19]  G. Weltje,et al.  Quantitative provenance analysis of sediments: review and outlook , 2004 .

[20]  S. M. Rimmer Geochemical paleoredox indicators in Devonian–Mississippian black shales, Central Appalachian Basin (USA) , 2004 .

[21]  A. Jacobson,et al.  Climatic and tectonic controls on chemical weathering in the New Zealand Southern Alps , 2003 .

[22]  G. Shimmield,et al.  Estuaries as Repositories of Historical Contamination and their Impact on Shelf Seas , 2002 .

[23]  R. L. Cullers Implications of elemental concentrations for provenance, redox conditions, and metamorphic studies of shales and limestones near Pueblo, CO, USA , 2002 .

[24]  L. Balistrieri,et al.  Suboxic trace metal geochemistry in the Eastern Tropical North Pacific , 2002 .

[25]  P. Singh,et al.  REE geochemistry of recent clastic sediments from the Kaveri floodplains, southern India: Implication to source area weathering and sedimentary processes , 2001 .

[26]  P. Rainbow,et al.  Availability of cadmium and zinc from sewage sludge to the flounder, Platichthys flesus, via a marine food chain. , 2001, Marine environmental research.

[27]  V. Podkovyrov,et al.  Geochemistry of the Mesoproterozoic Lakhanda shales in southeastern Yakutia, Russia: implications for mineralogical and provenance control, and recycling , 2000 .

[28]  P. Fralick,et al.  Geochemical discrimination of clastic sedimentary rock sources , 1997 .

[29]  H. Ohmoto,et al.  Geochemistry of ∼1.9 Ga sedimentary rocks from northeastern Labrador, Canada , 1997 .

[30]  I. P. Silva,et al.  Orbitally induced limestone/marlstone rhythms in the Albian—Cenomanian Cismon section (Venetian region, northern Italy): Sedimentology, calcareous and siliceous plankton distribution, elemental and isotope geochemistry , 1996 .

[31]  G. M. Young,et al.  Petrogenesis of sediments in the absence of chemical weathering: effects of abrasion and sorting on bulk composition and mineralogy , 1996 .

[32]  G. M. Young,et al.  Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance , 1995 .

[33]  D. Lowe,et al.  The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States , 1995 .

[34]  J. Nriagu,et al.  Impact of abandoned mine tailings on the arsenic concentrations in Moira Lake, Ontario , 1995 .

[35]  D. Manning,et al.  Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones , 1994 .

[36]  S. McLennan Weathering and Global Denudation , 1993, The Journal of Geology.

[37]  K. Condie Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales , 1993 .

[38]  R. Jahnke,et al.  Early diagenesis in differing depositional environments: The response of transition metals in pore water , 1990 .

[39]  A. Leube,et al.  The early Proterozoic Birimian Supergroup of Ghana and some aspects of its associated gold mineralization , 1990 .

[40]  R. H. Meade,et al.  First-Cycle Quartz Arenites in the Orinoco River Basin, Venezuela and Colombia , 1988, The Journal of Geology.

[41]  H. Dill,et al.  Petrography, inorganic and organic geochemistry of Lower Permian carbonaceous fan sequences (``Brandschiefer Series'') — Federal Republic of Germany: Constraints to their paleogeography and assessment of their source rock potential , 1988 .

[42]  B. Roser,et al.  Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data , 1988 .

[43]  K. Condie,et al.  Geochemistry of Archean shales from the Witwatersrand Supergroup, South Africa: source-area weathering and provenance , 1987 .

[44]  B. Roser,et al.  Determination of Tectonic Setting of Sandstone-Mudstone Suites Using SiO2 Content and K2O/Na2O Ratio , 1986, The Journal of Geology.

[45]  H. Dill Metallogenesis of early Paleozoic graptolite shales from the Graefenthal Horst (northern Bavaria-Federal Republic of Germany) , 1986 .

[46]  P. Dutta,et al.  Alluvial sandstone composition and paleoclimate; I, Framework mineralogy , 1986 .

[47]  M. Glikson,et al.  Trace elements in oil shales, their source and organic association with particular reference to Australian deposits☆ , 1985 .

[48]  G. M. Young,et al.  Early Proterozoic climates and plate motions inferred from major element chemistry of lutites , 1982, Nature.

[49]  S. L. Jansen,et al.  Basement and Sedimentary Recycling and Continental Evolution , 1979, The Journal of Geology.