T-lex2: genotyping, frequency estimation and re-annotation of transposable elements using single or pooled next-generation sequencing data

Transposable elements (TEs) constitute the most active, diverse and ancient component in a broad range of genomes. Complete understanding of genome function and evolution cannot be achieved without a thorough understanding of TE impact and biology. However, in-depth analysis of TEs still represents a challenge due to the repetitive nature of these genomic entities. In this work, we present a broadly applicable and flexible tool: T-lex2. T-lex2 is the only available software that allows routine, automatic, and accurate genotyping of individual TE insertions and estimation of their population frequencies both using individual strain and pooled next-generation sequencing (NGS) data. Furthermore, T-lex2 also assesses the quality of the calls allowing the identification of miss-annotated TEs and providing the necessary information to re-annotate them. The flexible and customizable design of T-lex2 allows running it in any genome and for any type of TE insertion. Here, we tested the fidelity of T-lex2 using the fly and human genomes. Overall, T-lex2 represents a significant improvement in our ability to analyze the contribution of TEs to genome function and evolution as well as learning about the biology of TEs. T-lex2 is freely available online at http://sourceforge.net/projects/tlex/. Abbreviations TE transposable element NGS next-generation sequencing LTR long-terminal repeat TSD target site duplication PTS putative target site PE paired-end

[1]  Miriam K. Konkel,et al.  Tangram: a comprehensive toolbox for mobile element insertion detection , 2014, BMC Genomics.

[2]  Josefa González,et al.  A Transposable Element Insertion Confers Xenobiotic Resistance in Drosophila , 2014, PLoS genetics.

[3]  Zhiping Weng,et al.  TEMP: a computational method for analyzing transposable element polymorphism in populations , 2014, Nucleic acids research.

[4]  Maite G. Barrón,et al.  The transposable element Bari‐Jheh mediates oxidative stress response in Drosophila , 2014, Molecular ecology.

[5]  R. Wilson,et al.  The Next-Generation Sequencing Revolution and Its Impact on Genomics , 2013, Cell.

[6]  E. Shapiro,et al.  Single-cell sequencing-based technologies will revolutionize whole-organism science , 2013, Nature Reviews Genetics.

[7]  Yutaka Okumoto,et al.  The Use of RelocaTE and Unassembled Short Reads to Produce High-Resolution Snapshots of Transposable Element Generated Diversity in Rice , 2013, G3: Genes, Genomes, Genetics.

[8]  Josefa González,et al.  The impact of transposable elements in environmental adaptation , 2013, Molecular ecology.

[9]  Thomas M. Keane,et al.  RetroSeq: transposable element discovery from next-generation sequencing data , 2013, Bioinform..

[10]  K. Akagi,et al.  How do mammalian transposons induce genetic variation? A conceptual framework , 2013, BioEssays : news and reviews in molecular, cellular and developmental biology.

[11]  Rebecca J. Oakey,et al.  Transposable Elements Re-Wire and Fine-Tune the Transcriptome , 2013, PLoS genetics.

[12]  B. Chénais,et al.  The impact of transposable elements on eukaryotic genomes: from genome size increase to genetic adaptation to stressful environments. , 2012, Gene.

[13]  Alexander Platzer,et al.  TE-Locate: A Tool to Locate and Group Transposable Element Occurrences Using Paired-End Next-Generation Sequencing Data , 2012, Biology.

[14]  Lovelace J. Luquette,et al.  Landscape of Somatic Retrotransposition in Human Cancers , 2012, Science.

[15]  Dmitri A. Petrov,et al.  Empirical Validation of Pooled Whole Genome Population Re-Sequencing in Drosophila melanogaster , 2012, PloS one.

[16]  Casey M. Bergman,et al.  Whole Genome Resequencing Reveals Natural Target Site Preferences of Transposable Elements in Drosophila melanogaster , 2012, PloS one.

[17]  Kevin R. Thornton,et al.  The Drosophila melanogaster Genetic Reference Panel , 2012, Nature.

[18]  Robert Kofler,et al.  Sequencing of Pooled DNA Samples (Pool-Seq) Uncovers Complex Dynamics of Transposable Element Insertions in Drosophila melanogaster , 2012, PLoS genetics.

[19]  Cristian Chaparro,et al.  Methods and software in NGS for TE analysis. , 2012, Methods in molecular biology.

[20]  Valer Gotea,et al.  Transposable elements and their identification. , 2012, Methods in molecular biology.

[21]  S. Salzberg,et al.  Repetitive DNA and next-generation sequencing: computational challenges and solutions , 2011, Nature Reviews Genetics.

[22]  M. Batzer,et al.  Repetitive Elements May Comprise Over Two-Thirds of the Human Genome , 2011, PLoS genetics.

[23]  Francis M. Jiggins,et al.  Successive Increases in the Resistance of Drosophila to Viral Infection through a Transposon Insertion Followed by a Duplication , 2011, PLoS genetics.

[24]  Adrian M. Stütz,et al.  A Comprehensive Map of Mobile Element Insertion Polymorphisms in Humans , 2011, PLoS genetics.

[25]  H. Kazazian,et al.  Whole-genome resequencing allows detection of many rare LINE-1 insertion alleles in humans. , 2011, Genome research.

[26]  R. Ramaswamy,et al.  Genome-wide analysis of mobile genetic element insertion sites , 2011, Nucleic acids research.

[27]  D. Petrov,et al.  Population genomics of transposable elements in Drosophila melanogaster. , 2011, Molecular biology and evolution.

[28]  Lucian Ilie,et al.  SHRiMP2: Sensitive yet Practical Short Read Mapping , 2011, Bioinform..

[29]  D. Petrov,et al.  T-lex: a program for fast and accurate assessment of transposable element presence using next-generation sequencing data , 2010, Nucleic acids research.

[30]  P. Capy,et al.  The struggle for life of the genome's selfish architects , 2011, Biology Direct.

[31]  C. Biémont A Brief History of the Status of Transposable Elements: from Junk Dna to Major Players in Evolution Transposable Elements as Components of Genetic Diversity , 2022 .

[32]  Andrew F. Neuwald,et al.  Natural Mutagenesis of Human Genomes by Endogenous Retrotransposons , 2010, Cell.

[33]  E. Lerat Identifying repeats and transposable elements in sequenced genomes: how to find your way through the dense forest of programs , 2010, Heredity.

[34]  Faraz Hach,et al.  Next-generation VariationHunter: combinatorial algorithms for transposon insertion discovery , 2010, Bioinform..

[35]  Philipp W. Messer,et al.  Genome-Wide Patterns of Adaptation to Temperate Environments Associated with Transposable Elements in Drosophila , 2010, PLoS genetics.

[36]  Kevin R. Thornton,et al.  Validation of Rearrangement Break Points Identified by Paired-End Sequencing in Natural Populations of Drosophila melanogaster , 2010, Genome biology and evolution.

[37]  J. Pritchard,et al.  Review Characterizing , 2022 .

[38]  Michael Brudno,et al.  SHRiMP: Accurate Mapping of Short Color-space Reads , 2009, PLoS Comput. Biol..

[39]  V. Hartenstein,et al.  Drosophila melanogaster , 2005 .

[40]  Josefa González,et al.  High Rate of Recent Transposable Element–Induced Adaptation in Drosophila melanogaster , 2008, PLoS biology.

[41]  J. Jurka,et al.  A universal classification of eukaryotic transposable elements implemented in Repbase , 2008, Nature Reviews Genetics.

[42]  Stefan Kurtz,et al.  LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons , 2008, BMC Bioinformatics.

[43]  J. Bennetzen,et al.  A unified classification system for eukaryotic transposable elements , 2007, Nature Reviews Genetics.

[44]  A. Doust,et al.  Comparative Sequence Analysis of the Phytochrome C Gene and its Upstream Region in Allohexaploid Wheat Reveals New Data on the Evolution of its Three Constituent Genomes , 2005, Plant Molecular Biology.

[45]  J. Jurka,et al.  Molecular paleontology of transposable elements in the Drosophila melanogaster genome , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[46]  Jef D Boeke,et al.  Molecular archeology of L1 insertions in the human genome , 2002, Genome Biology.

[47]  W. J. Kent,et al.  BLAT--the BLAST-like alignment tool. , 2002, Genome research.

[48]  Eugene Berezikov,et al.  A search for reverse transcriptase-coding sequences reveals new non-LTR retrotransposons in the genome of Drosophila melanogaster , 2000, Genome Biology.

[49]  S E Celniker,et al.  The Drosophila genome. , 2000, Current opinion in genetics & development.

[50]  G. Rubin,et al.  Copia-like transposable elements in the Drosophila genome. , 1981, Cold Spring Harbor symposia on quantitative biology.

[51]  G. Rubin,et al.  Insertion of the drosophila transposable element copia generates a 5 base pair duplication , 1980, Cell.