The Half-Half Plot
暂无分享,去创建一个
[1] C. Chu,et al. Kernel-Type Estimators of Jump Points and Values of a Regression Function , 1993 .
[2] J. Steinebach,et al. Testing for Changes in Multivariate Dependent Observations with an Application to Temperature Changes , 1999 .
[3] Irène Gijbels,et al. Bandwidth Selection for Changepoint Estimation in Nonparametric Regression , 2004, Technometrics.
[4] P. Hall,et al. Edge-preserving and peak-preserving smoothing , 1992 .
[5] John Alan McDonald,et al. Smoothing with split linear fits , 1986 .
[6] Anestis Antoniadis,et al. Detecting Abrupt Changes by Wavelet Methods , 2002 .
[7] C. S. Kim. SiZer for jump detection , 1999 .
[8] G. Grégoire,et al. Change point estimation by local linear smoothing , 2002 .
[9] H. Müller. CHANGE-POINTS IN NONPARAMETRIC REGRESSION ANALYSIS' , 1992 .
[10] C. Loader. CHANGE POINT ESTIMATION USING NONPARAMETRIC REGRESSION , 1996 .
[11] María Dolores Martínez Miranda,et al. Local linear kernel estimation of the discontinuous regression function , 2006, Comput. Stat..
[12] Wavelet estimation of a regression function with a sharp change point in a random design , 2006 .
[13] Irène Gijbels,et al. On the Estimation of Jump Points in Smooth Curves , 1999 .
[14] Winfried Stute,et al. Nonparametric estimation of a discontinuity in regression , 2002 .
[15] Peihua Qiu,et al. Jump-Preserving Regression and Smoothing using Local Linear Fitting: A Compromise , 2007 .
[16] Peihua Qiu,et al. Jump Detection in a Regression Curve and Its Derivative , 2009, Technometrics.
[17] Yazhen Wang. Jump and sharp cusp detection by wavelets , 1995 .