Production of intermediate-mass black holes in globular clusters

The discovery of numerous non-nuclear X-ray point sources with luminosities L>1039 erg s−1 in several starburst galaxies has stimulated speculation about their nature and origin. The strong variability seen in several sources points to massive black holes as the central engines. If the flux is isotropic, the luminosities range up to ≈1041 erg s−1, implying masses of M≳103 M⊙ if the luminosity is sub-Eddington. Here we explore a model for these sources. We suggest that in some tens of per cent of globular clusters a very massive black hole, M≳50 M⊙, is formed. This black hole sinks in ≲106 yr to the centre of the cluster, where in the ∼1010 yr lifetime of the cluster it accretes ∼103 M⊙, primarily in the form of lighter black holes. Unlike less-massive black holes in binaries, which are flung from clusters by recoil before they can merge gravitationally, a ≳50 M⊙ black hole has enough inertia that it remains bound to the cluster. We suggest that ∼103 M⊙ black holes may be common in the centres of dense globular clusters, and may therefore exist in some tens of per cent of current globulars. If the cluster later merges with its host galaxy, accretion from young star clusters in molecular clouds by the black hole can generate luminosity consistent with that observed. We also consider the detectability of massive black holes in globular clusters with gravitational wave detectors, and speculate on future observations that may test our predictions.

[1]  S. Murray,et al.  High-Resolution X-ray Imaging of a Globular Cluster Core: Compact Binaries in 47Tuc , 2001, Science.

[2]  A. King,et al.  Ultraluminous X-Ray Sources in External Galaxies , 2001, astro-ph/0104333.

[3]  D. Lorimer,et al.  Timing the millisecond pulsars in 47 Tucanae , 2001, astro-ph/0103372.

[4]  S. Murray,et al.  Chandra Observations of “The Antennae” Galaxies (NGC 4038/9) , 2001, astro-ph/0102256.

[5]  London,et al.  Mass-loss predictions for O and B stars as a function of metallicity , 2001, astro-ph/0101509.

[6]  Martin J. Rees,et al.  ApJ, in press Preprint typeset using L ATEX style emulateapj v. 04/03/99 MASSIVE BLACK HOLES AS POPULATION III REMNANTS , 2001 .

[7]  Harvard-Smithsonian Center for Astrophysics,et al.  Discovery of a Luminous, Variable, Off-Center Source in the Nucleus of M82 with the Chandra High-Resolution Camera , 2000, astro-ph/0009250.

[8]  D. Hartmann,et al.  The Milky Way in Molecular Clouds: A New Complete CO Survey , 2000, astro-ph/0009217.

[9]  P. Kaaret,et al.  Chandra High-Resolution Camera observations of the luminous X-ray source in the starburst galaxy M82 , 2000, astro-ph/0009211.

[10]  P. Hut,et al.  How Many Young Star Clusters Exist in the Galactic Center? , 2000, astro-ph/0008490.

[11]  K. Kohno,et al.  Formation of a Massive Black Hole at the Center of the Superbubble in M82 , 2000, astro-ph/0011071.

[12]  K. Lo,et al.  Molecular Gas and the Modest Star Formation Efficiency in the “Antennae” Galaxies: Arp 244 = NGC 4038/9 , 2000, astro-ph/0010128.

[13]  D. Merritt,et al.  Black Hole Demographics from the M(BH)-sigma Relation , 2000, astro-ph/0009076.

[14]  P. Kronberg,et al.  A Search for Flux Density Variations in 24 Compact Radio Sources in M82 , 2000 .

[15]  U. Cambridge,et al.  Excess submillimetre emission from GRS 1915+105 , 2000, astro-ph/0004123.

[16]  D. J. McKay,et al.  Radio Emission from GRO J1655–40 during the 1994 Jet Ejection Episodes , 2000, astro-ph/0003466.

[17]  T. Tsuru,et al.  Formation of Intermediate-Mass Black Holes in Circumnuclear Regions of Galaxies , 2000, astro-ph/0002389.

[18]  Aya Kubota,et al.  The Nature of Ultraluminous Compact X-Ray Sources in Nearby Spiral Galaxies , 2000, astro-ph/0001009.

[19]  K. Gebhardt,et al.  Canada-France-Hawaii Telescope Adaptive Optics Observations of the Central Kinematics in M15 , 1999, astro-ph/9912172.

[20]  McMillan,et al.  Black Hole Mergers in the Universe , 1999, The Astrophysical journal.

[21]  H. Bethe,et al.  Hypercritical Advection-dominated Accretion Flow , 1999, astro-ph/9909132.

[22]  Simon F. Portegies Zwart,et al.  The Evolution of Globular Clusters in the Galaxy , 1999, astro-ph/9903366.

[23]  P. Brady,et al.  Searching for periodic sources with LIGO. II. Hierarchical searches , 1998, gr-qc/9812014.

[24]  R. Xu,et al.  PSR 0943+10: A Bare Strange Star? , 1999, astro-ph/9907132.

[25]  J. Cassinelli,et al.  Introduction to Stellar Winds by Henny J. G. L. M. Lamers , 1999 .

[26]  J. Cassinelli,et al.  Introduction to Stellar Winds , 1999 .

[27]  A. Zezas,et al.  ROSAT observations of the dwarf star‐forming galaxy Holmberg II (UGC 4305) , 1999, astro-ph/9903355.

[28]  Chris L. Fryer Mass Limits For Black Hole Formation , 1999, astro-ph/9902315.

[29]  B. Mihov,et al.  The Nature of Accreting Black Holes in Nearby Galaxy Nuclei , 1999, astro-ph/9901023.

[30]  M. Benacquista Gravitational Radiation from Globular Clusters , 1998, astro-ph/9810484.

[31]  Y. Ohyama,et al.  What Controls the Star Formation in Luminous Starburst Mergers? , 1998, astro-ph/9810260.

[32]  J. Ostriker,et al.  Effects of Tidal Shocks on the Evolution of Globular Clusters , 1998, astro-ph/9806245.

[33]  S. Zwart,et al.  The Disruption of Globular Star Clusters in the Galaxy: A Comparative Analysisbetween Fokker-Planck and N-Body Models , 1998, astro-ph/9805310.

[34]  Italy.,et al.  A unifying view of the spectral energy distributions of blazars , 1998, astro-ph/9804103.

[35]  C. Sosin Mass Segregation and Equipartition of Energy in Two Globular Clusters with Central Density Cusps. , 1997, astro-ph/9707251.

[36]  F. Schweizer,et al.  ROSAT HRI Observations of NGC 4038/4039, “The Antennae” Galaxies , 1997 .

[37]  T. Takahashi,et al.  Broadband High-Energy Observations of the Superluminal Jet Source GRO J1655–40 during an Outburst , 1996, astro-ph/9611023.

[38]  M. Rees,et al.  Capture of stellar mass compact objects by massive black holes in galactic cusps , 1996, astro-ph/9608093.

[39]  J. Ostriker,et al.  Destruction of the Galactic Globular Cluster System , 1996, astro-ph/9603042.

[40]  A. Tielens,et al.  X-Ray--irradiated Molecular Gas. I. Physical Processes and General Results , 1996 .

[41]  G. Quinlan The time-scale for core collapse in spherical star clusters , 1996, astro-ph/9606182.

[42]  E. Phinney,et al.  Dynamics and Interactions of Binaries and Neutron Stars in Globular Clusters , 1994, astro-ph/9412078.

[43]  Hyung-Mok Lee Evolution of galactic nuclei with 10-M⊙ black holes , 1994, astro-ph/9409073.

[44]  K. Gebhardt,et al.  Fabry-Perot observations of globular clusters. II. 47 TUC, NGC 6397, and M30 , 1995 .

[45]  Steinn Sigurdsson,et al.  Primordial black holes in globular clusters , 1993, Nature.

[46]  Georges Meylan,et al.  Structure and dynamics of globular clusters , 1993 .

[47]  R. Chevalier,et al.  Steady spherical hypercritical accretion onto neutron stars , 1991 .

[48]  Stuart Louis Shapiro,et al.  Dynamical evolution of dense clusters of compact stars , 1989 .

[49]  Giuseppina Fabbiano,et al.  X Rays From Normal Galaxies , 1989 .

[50]  B. Shustov Protostars and Planets II , 1987 .

[51]  J. Scalo The stellar initial mass function , 1986 .

[52]  Piet Hut,et al.  Dynamics of Star Clusters , 1985 .

[53]  A. Dupree Mass loss from cool stars , 1981 .

[54]  Martin J. Rees,et al.  Effects of Massive Central Black Holes on Dense Stellar Systems , 1976 .

[55]  Douglas C. Heggie,et al.  Binary evolution in stellar dynamics , 1975 .

[56]  P. C. Peters Gravitational Radiation and the Motion of Two Point Masses , 1964 .