Writer-adaptation for on-line handwritten character recognition

The authors have designed a writer-adaptable character recognition system for online characters entered on a touch terminal. It is based on a Time Delay Neural Network (TDNN) that is pre-trained on examples from many writers to recognize digits and uppercase letters. The TDNN without its last layer serves as a preprocessor for an optimal hyperplane classifier that can be easily retrained to peculiar writing styles. This combination allows for fast writer-dependent learning of new letters and symbols. The system is memory and speed efficient.<<ETX>>