Frequency-Diverse Computational Polarimetic Imaging

In this paper, a frequency-diverse computational polarimetric imaging system is demonstrated at K-band (17.5-26.5 GHz) frequencies. The frequency-diverse operation enables all-electronic data-acquisition by means of a simple frequency-sweep and requires no mechanically moving apparatus or phase shifting circuits for imaging. Leveraging a tensor model for the scattering behavior, as opposed to a scalar model, enables the extraction of further information from the imaged objects. This is shown by means of frequency-diverse polarimetric imaging of complex objects, such as the letters of the word “DUKE”, and comparing the reconstructed polarimetric images to the reflectivity-only reconstructions of the same objects.

[1]  Richard Obermeier,et al.  Sensing Matrix Design via Mutual Coherence Minimization for Electromagnetic Compressive Imaging Applications , 2017, IEEE Transactions on Computational Imaging.

[2]  David R. Smith,et al.  Sparse blind deconvolution for imaging through layered media , 2017 .

[3]  Matteo Pastorino,et al.  A computational technique based on a real-coded genetic algorithm for microwave imaging purposes , 2000, IEEE Trans. Geosci. Remote. Sens..

[4]  David R. Smith,et al.  Comprehensive simulation platform for a metamaterial imaging system. , 2015, Applied optics.

[5]  ICHAEL,et al.  Computational Polarimetric Microwave Imaging , 2017 .

[6]  Cyril Decroze,et al.  Sparsity-Driven Reconstruction Technique for Microwave/Millimeter-Wave Computational Imaging , 2018, Sensors.

[7]  David R. Smith,et al.  Computational imaging using a mode-mixing cavity at microwave frequencies , 2015 .

[8]  David R. Smith,et al.  Metamaterial Apertures for Computational Imaging , 2013, Science.

[9]  Ettien Kpré,et al.  Computational Imaging for Compressive Synthetic Aperture Interferometric Radiometer , 2018, IEEE Transactions on Antennas and Propagation.

[10]  David R. Smith,et al.  Multistatic microwave imaging with arrays of planar cavities , 2016 .

[11]  David R. Smith,et al.  Resolution of the Frequency Diverse Metamaterial Aperture Imager , 2015 .

[12]  Thomas Fromenteze,et al.  Single-frequency microwave imaging with dynamic metasurface apertures , 2017, 1704.03303.

[13]  A. Massa,et al.  Computational approach based on a particle swarm optimizer for microwave imaging of two-dimensional dielectric scatterers , 2005, IEEE Transactions on Microwave Theory and Techniques.

[14]  David R. Smith,et al.  Computational microwave imaging using 3D printed conductive polymer frequency-diverse metasurface antennas , 2017, 1704.02017.

[15]  David R. Smith,et al.  A reconfigurable millimeter-wave spotlight metasurface aperture integrated with a frequency-diverse microwave imager for security screening , 2018, Defense + Security.

[16]  Ali Molaei,et al.  3-D-Printed $E$-Band Compressive Horn Antenna for High-Sensing-Capacity Imaging Applications , 2018, IEEE Antennas and Wireless Propagation Letters.

[17]  Thomas Fromenteze,et al.  Millimeter-wave spotlight imager using dynamic holographic metasurface antennas. , 2017, Optics express.

[18]  E. Pottier,et al.  Polarimetric Radar Imaging: From Basics to Applications , 2009 .

[19]  David R. Smith,et al.  Software Calibration of a Frequency-Diverse, Multistatic, Computational Imaging System , 2016, IEEE Access.

[20]  David R. Smith,et al.  Design and Simulation of a Frequency-Diverse Aperture for Imaging of Human-Scale Targets , 2016, IEEE Access.

[21]  David R. Smith,et al.  Dynamically reconfigurable holographic metasurface aperture for a Mills-Cross monochromatic microwave camera. , 2018, Optics express.

[22]  David R. Smith,et al.  Metamaterial microwave holographic imaging system. , 2014, Journal of the Optical Society of America. A, Optics, image science, and vision.

[23]  Fernando Las-Heras,et al.  Three-Dimensional Compressed Sensing-Based Millimeter-Wave Imaging , 2015, IEEE Transactions on Antennas and Propagation.

[24]  David R. Smith,et al.  Large Metasurface Aperture for Millimeter Wave Computational Imaging at the Human-Scale , 2017, Scientific Reports.

[25]  David R. Smith,et al.  Spatially resolving antenna arrays using frequency diversity. , 2016, Journal of the Optical Society of America. A, Optics, image science, and vision.

[26]  David R. Smith,et al.  Near-field multistatic radar reconstruction with stretched-phase Fourier accelerated multistatic imaging , 2017 .

[27]  David R. Smith,et al.  Fourier Accelerated Multistatic Imaging: A Fast Reconstruction Algorithm for Multiple-Input-Multiple-Output Radar Imaging , 2017, IEEE Access.

[28]  John C. Bennett,et al.  High-resolution microwave polarimetric imaging of small trees , 1999, IEEE Trans. Geosci. Remote. Sens..

[29]  David R. Smith,et al.  Printed Aperiodic Cavity for Computational and Microwave Imaging , 2016, IEEE Microwave and Wireless Components Letters.

[30]  David Shrekenhamer,et al.  Terahertz single pixel imaging with an optically controlled dynamic spatial light modulator. , 2013, Optics express.

[31]  David R. Smith,et al.  Frequency-diverse microwave imaging using planar Mills-Cross cavity apertures. , 2016, Optics express.

[32]  Cyril Decroze,et al.  MIMO radar pseudo-orthogonal waveform generation by a passive 1 × M mode-mixing microwave cavity , 2017 .

[33]  D. Brady Optical Imaging and Spectroscopy , 2009 .

[34]  David R. Smith,et al.  Metamaterial apertures for coherent computational imaging on the physical layer. , 2013, Journal of the Optical Society of America. A, Optics, image science, and vision.

[35]  Thomas Fromenteze,et al.  Relaxation of Alignment Errors and Phase Calibration in Computational Frequency-Diverse Imaging using Phase Retrieval , 2018, IEEE Access.

[36]  Michael Boyarsky,et al.  Design considerations for a dynamic metamaterial aperture for computational imaging at microwave frequencies , 2016 .

[37]  David R. Smith,et al.  Cavity-backed metasurface antennas and their application to frequency diversity imaging. , 2017, Journal of the Optical Society of America. A, Optics, image science, and vision.