Reward Association Enhances Stimulus-Specific Representations in Primary Visual Cortex

[1]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.

[2]  R. Shapley,et al.  Orientation Selectivity in Macaque V1: Diversity and Laminar Dependence , 2002, The Journal of Neuroscience.

[3]  Frank Tong,et al.  Cognitive neuroscience: Primary visual cortex and visual awareness , 2003, Nature Reviews Neuroscience.

[4]  M. Bear,et al.  Reward Timing in the Primary Visual Cortex , 2006, Science.

[5]  M. Bear,et al.  Instructive Effect of Visual Experience in Mouse Visual Cortex , 2006, Neuron.

[6]  G. Beauchamp,et al.  Time for some a priori thinking about post hoc testing , 2008 .

[7]  J. Maunsell,et al.  Attention improves performance primarily by reducing interneuronal correlations , 2009, Nature Neuroscience.

[8]  Nathalie L Rochefort,et al.  Dendritic organization of sensory input to cortical neurons in vivo , 2010, Nature.

[9]  M. Stryker,et al.  Modulation of Visual Responses by Behavioral State in Mouse Visual Cortex , 2010, Neuron.

[10]  Mark F Bear,et al.  Visual Experience Induces Long-Term Potentiation in the Primary Visual Cortex , 2010, The Journal of Neuroscience.

[11]  Georg B. Keller,et al.  Sensorimotor Mismatch Signals in Primary Visual Cortex of the Behaving Mouse , 2012, Neuron.

[12]  C. Gilbert,et al.  Adult Visual Cortical Plasticity , 2012, Neuron.

[13]  Norman M Weinberger,et al.  Extinction reveals that primary sensory cortex predicts reinforcement outcome , 2012, The European journal of neuroscience.

[14]  P. Golshani,et al.  Cellular mechanisms of brain-state-dependent gain modulation in visual cortex , 2013, Nature Neuroscience.

[15]  Michael J. Goard,et al.  Fast Modulation of Visual Perception by Basal Forebrain Cholinergic Neurons , 2013, Nature Neuroscience.

[16]  Stefan R. Pulver,et al.  Ultra-sensitive fluorescent proteins for imaging neuronal activity , 2013, Nature.

[17]  M. Bear,et al.  A Cholinergic Mechanism for Reward Timing within Primary Visual Cortex , 2013, Neuron.

[18]  Cyriel M A Pennartz,et al.  In Vivo Two-Photon Ca2+ Imaging Reveals Selective Reward Effects on Stimulus-Specific Assemblies in Mouse Visual Cortex , 2013, The Journal of Neuroscience.

[19]  C. Gilbert,et al.  Top-down influences on visual processing , 2013, Nature Reviews Neuroscience.

[20]  M. Carandini,et al.  Integration of visual motion and locomotion in mouse visual cortex , 2013, Nature Neuroscience.

[21]  Mark F. Bear,et al.  Learned spatiotemporal sequence recognition and prediction in primary visual cortex , 2014, Nature Neuroscience.

[22]  S. Löwel,et al.  Voluntary Physical Exercise Promotes Ocular Dominance Plasticity in Adult Mouse Primary Visual Cortex , 2014, The Journal of Neuroscience.

[23]  M. Stryker,et al.  A Cortical Circuit for Gain Control by Behavioral State , 2014, Cell.

[24]  M. Stryker,et al.  Identification of a Brainstem Circuit Regulating Visual Cortical State in Parallel with Locomotion , 2014, Neuron.

[25]  Dmitriy Aronov,et al.  Engagement of Neural Circuits Underlying 2D Spatial Navigation in a Rodent Virtual Reality System , 2014, Neuron.

[26]  Ovidiu F. Jurjuţ,et al.  Effects of Locomotion Extend throughout the Mouse Early Visual System , 2014, Current Biology.

[27]  Jorrit Steven Montijn,et al.  Population coding in mouse visual cortex: response reliability and dissociability of stimulus tuning and noise correlation , 2014, Front. Comput. Neurosci..

[28]  E. Vaucher,et al.  Boosting visual cortex function and plasticity with acetylcholine to enhance visual perception , 2014, Front. Syst. Neurosci..

[29]  George H. Denfield,et al.  Pupil Fluctuations Track Fast Switching of Cortical States during Quiet Wakefulness , 2014, Neuron.

[30]  Y. Dan,et al.  Long-range and local circuits for top-down modulation of visual cortex processing , 2014, Science.

[31]  Stephen D. Van Hooser,et al.  Robust quantification of orientation selectivity and direction selectivity , 2014, Front. Neural Circuits.

[32]  L. Pessoa Multiple influences of reward on perception and attention , 2015, Visual cognition.

[33]  Michael P Stryker,et al.  A cortical disinhibitory circuit for enhancing adult plasticity , 2015, eLife.

[34]  Martin Vinck,et al.  Arousal and Locomotion Make Distinct Contributions to Cortical Activity Patterns and Visual Encoding , 2014, Neuron.

[35]  Mark F. Bear,et al.  Visual recognition memory, manifest as long-term habituation, requires synaptic plasticity in V1 , 2015, Nature Neuroscience.

[36]  Georg B. Keller,et al.  Learning Enhances Sensory and Multiple Non-sensory Representations in Primary Visual Cortex , 2015, Neuron.

[37]  Takaki Komiyama,et al.  Learning enhances the relative impact of top-down processing in the visual cortex , 2015, Nature Neuroscience.

[38]  M. Häusser,et al.  Synaptic representation of locomotion in single cerebellar granule cells , 2015, eLife.

[39]  Sander W. Keemink,et al.  Behavioral-state modulation of inhibition is context-dependent and cell type specific in mouse visual cortex , 2016, eLife.

[40]  S. Kuhlman,et al.  Top-Down-Mediated Facilitation in the Visual Cortex Is Gated by Subcortical Neuromodulation , 2016, The Journal of Neuroscience.

[41]  Georg B. Keller,et al.  Mismatch Receptive Fields in Mouse Visual Cortex , 2016, Neuron.

[42]  Johannes C. Dahmen,et al.  Thalamic nuclei convey diverse contextual information to layer 1 of visual cortex , 2015, Nature Neuroscience.

[43]  Dario L Ringach,et al.  Enhanced Spatial Resolution During Locomotion and Heightened Attention in Mouse Primary Visual Cortex , 2016, The Journal of Neuroscience.

[44]  Bruce L. McNaughton,et al.  Sparse orthogonal population representation of spatial context in the retrosplenial cortex , 2017, Nature Communications.

[45]  Maria C. Dadarlat,et al.  Locomotion Enhances Neural Encoding of Visual Stimuli in Mouse V1 , 2017, The Journal of Neuroscience.

[46]  Claudia Clopath,et al.  Variance and invariance of neuronal long-term representations , 2017, Philosophical Transactions of the Royal Society B: Biological Sciences.

[47]  Fritjof Helmchen,et al.  Stimulus relevance modulates contrast adaptation in visual cortex , 2016, eLife.

[48]  Steffen Katzner,et al.  Learning Enhances Sensory Processing in Mouse V1 before Improving Behavior , 2017, The Journal of Neuroscience.

[49]  M. Stryker,et al.  Locomotion Induces Stimulus-Specific Response Enhancement in Adult Visual Cortex , 2017, The Journal of Neuroscience.

[50]  Marshall G. Hussain Shuler,et al.  The Timing of Reward-Seeking Action Tracks Visually Cued Theta Oscillations in Primary Visual Cortex , 2017, The Journal of Neuroscience.

[51]  Alexander Attinger,et al.  Visuomotor Coupling Shapes the Functional Development of Mouse Visual Cortex , 2017, Cell.

[52]  Georg B. Keller,et al.  A Sensorimotor Circuit in Mouse Cortex for Visual Flow Predictions , 2017, Neuron.

[53]  A. Litke,et al.  Segregation of Visual Response Properties in the Mouse Superior Colliculus and Their Modulation during Locomotion , 2017, The Journal of Neuroscience.

[54]  Dominique L. Pritchett,et al.  Locomotor activity modulates associative learning in mouse cerebellum , 2017, Nature Neuroscience.

[55]  Guido T. Meijer,et al.  Conditioning sharpens the spatial representation of rewarded stimuli in mouse primary visual cortex , 2018, eLife.

[56]  Mriganka Sur,et al.  Task-dependent representations of stimulus and choice in mouse parietal cortex , 2017, Nature Communications.

[57]  Michele Giugliano,et al.  Locomotion modulates specific functional cell types in the mouse visual thalamus , 2018, Nature Communications.

[58]  R. Naik Ramesh,et al.  Intermingled Ensembles in Visual Association Cortex Encode Stimulus Identity or Predicted Outcome , 2018, Neuron.

[59]  M. Sahani,et al.  Distinct learning-induced changes in stimulus selectivity and interactions of GABAergic interneuron classes in visual cortex , 2018, Nature Neuroscience.

[60]  Tomaso Muzzu,et al.  Encoding of locomotion kinematics in the mouse cerebellum , 2016, bioRxiv.

[61]  Nathalie L Rochefort,et al.  Action and learning shape the activity of neuronal circuits in the visual cortex , 2018, Current Opinion in Neurobiology.

[62]  Nathalie L. Rochefort,et al.  The Impact of Visual Cues, Reward, and Motor Feedback on the Representation of Behaviorally Relevant Spatial Locations in Primary Visual Cortex , 2018, Cell reports.

[63]  Michal M. Milczarek,et al.  Spatial Memory Engram in the Mouse Retrosplenial Cortex , 2018, Current Biology.

[64]  Nathalie L. Rochefort,et al.  Chronic Two-Photon Calcium Imaging in the Visual Cortex of Awake Behaving Mice , 2018 .

[65]  Sander W. Keemink,et al.  FISSA: A neuropil decontamination toolbox for calcium imaging signals , 2018, Scientific Reports.

[66]  Troy W. Margrie,et al.  A Circuit for Integration of Head- and Visual-Motion Signals in Layer 6 of Mouse Primary Visual Cortex , 2018, Neuron.

[67]  Bruce L. McNaughton,et al.  Hippocampus-dependent emergence of spatial sequence coding in retrosplenial cortex , 2018, Proceedings of the National Academy of Sciences.

[68]  Mark T. Harnett,et al.  Opposing Somatic and Dendritic Expression of Stimulus-Selective Response Plasticity in Mouse Primary Visual Cortex , 2020, Frontiers in Cellular Neuroscience.

[69]  Claudia Clopath,et al.  Inhibitory microcircuits for top-down plasticity of sensory representations , 2019, Nature Communications.

[70]  M. Carandini,et al.  Spatial modulation of visual signals arises in cortex with active navigation , 2019, bioRxiv.

[71]  Matteo Carandini,et al.  Spatial encoding in the visual pathway arises in cortex and depends on active navigation , 2019 .

[72]  S. Kuhlman,et al.  Visual acuity performance level is independent of locomotion , 2019, bioRxiv.

[73]  Nathalie L Rochefort,et al.  High and asymmetric somato-dendritic coupling of V1 layer 5 neurons independent of visual stimulation and locomotion , 2019, eLife.

[74]  Lukas F Fischer,et al.  Representation of visual landmarks in retrosplenial cortex , 2020, eLife.