Field-free spin-orbit torque switching through domain wall motion

Deterministic current-induced spin-orbit torque (SOT) switching of magnetization in a heavy transition metal/ferromagnetic metal/oxide magnetic heterostructure with the ferromagnetic layer being perpendicularly magnetized typically requires an externally applied in-plane field to break the switching symmetry. We show that by inserting an in-plane magnetized ferromagnetic layer CoFeB underneath the conventional W/CoFeB/MgO SOT heterostructure, deterministic SOT switching of the perpendicularly magnetized top CoFeB layer can be realized without the need of in-plane bias field. Kerr imaging study further unveils that the observed switching is mainly dominated by domain nucleation and domain wall motion, which might limit the potentiality of using this type of multilayer stack design for nanoscale SOT-MRAM application. Comparison of the experimental switching behavior with micromagnetic simulations reveals that the deterministic switching in our devices cannot be explained by the stray field contribution of the in-plane magnetized layer, and the roughness-caused N\'eel coupling effect might play a more important role in achieving the observed field-free deterministic switching.

[1]  G. Xiao,et al.  Deterministic Current Induced Magnetic Switching Without External Field using Giant Spin Hall Effect of β-W , 2018, Scientific Reports.

[2]  Plamen Stamenov,et al.  Spin-orbit torque switching without an external field using interlayer exchange coupling. , 2016, Nature nanotechnology.

[3]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[4]  C. Chien,et al.  Switching a Perpendicular Ferromagnetic Layer by Competing Spin Currents. , 2018, Physical review letters.

[5]  Jong-Ryul Jeong,et al.  Field-free switching of perpendicular magnetization through spin-orbit torque in antiferromagnet/ferromagnet/oxide structures. , 2016, Nature nanotechnology.

[6]  J. Herskowitz,et al.  Proceedings of the National Academy of Sciences, USA , 1996, Current Biology.

[7]  Jianping Wang,et al.  External‐Field‐Free Spin Hall Switching of Perpendicular Magnetic Nanopillar with a Dipole‐Coupled Composite Structure , 2016, Advanced Electronic Materials.

[8]  D. Ralph,et al.  Central role of domain wall depinning for perpendicular magnetization switching driven by spin torque from the spin Hall effect , 2013, 1312.7301.

[9]  Stéphane Auffret,et al.  Spin-orbit torque magnetization switching controlled by geometry. , 2016, Nature nanotechnology.

[10]  B. Azzerboni,et al.  Switching of a single ferromagnetic layer driven by spin Hall effect , 2013 .

[11]  M. Stiles,et al.  Spin currents and spin–orbit torques in ferromagnetic trilayers , 2018, Nature Materials.

[12]  Yang Liu,et al.  Field-Free Spin-Orbit Torque Switching from Geometrical Domain-Wall Pinning. , 2018, Nano letters.

[13]  C. Ross,et al.  Fast switching and signature of efficient domain wall motion driven by spin-orbit torques in a perpendicular anisotropy magnetic insulator/Pt bilayer , 2017 .

[14]  B. Diény,et al.  Perpendicular magnetic anisotropy at transition metal/oxide interfaces and applications , 2017 .

[15]  J. Bokor,et al.  Switching of perpendicularly polarized nanomagnets with spin orbit torque without an external magnetic field by engineering a tilted anisotropy , 2014, Proceedings of the National Academy of Sciences.

[16]  G. Xiao,et al.  Beta (β) tungsten thin films: Structure, electron transport, and giant spin Hall effect , 2015 .

[17]  G. Beach,et al.  Current-driven dynamics of chiral ferromagnetic domain walls. , 2013, Nature materials.

[18]  Weisheng Zhao,et al.  Size dependence of the spin-orbit torque induced magnetic reversal in W/CoFeB/MgO nanostructures , 2018 .

[19]  T. Silva,et al.  Observation of spin-orbit effects with spin rotation symmetry , 2017, Nature Communications.

[20]  H. Ohno,et al.  Spin-orbit torque induced magnetization switching in nano-scale Ta/CoFeB/MgO , 2015 .

[21]  D. Ralph,et al.  Current-induced switching of perpendicularly magnetized magnetic layers using spin torque from the spin Hall effect. , 2012, Physical review letters.

[22]  Hyun-Woo Lee,et al.  Spin Hall torque magnetometry of Dzyaloshinskii domain walls , 2013, 1308.1432.

[23]  D. Ralph,et al.  Spin-Torque Switching with the Giant Spin Hall Effect of Tantalum , 2012, Science.

[24]  B. Koopmans,et al.  Field-free magnetization reversal by spin-Hall effect and exchange bias , 2015, Nature Communications.

[25]  Nan Zhang,et al.  Electric field control of deterministic current-induced magnetization switching in a hybrid ferromagnetic/ferroelectric structure. , 2016, Nature materials.

[26]  M. Stiles,et al.  Spin-orbit torques induced by interface-generated spin currents , 2017, 1708.06864.

[27]  J. Pearson,et al.  Suppression of spin-pumping by a MgO tunnel-barrier , 2009, 0911.3182.

[28]  Kang L. Wang,et al.  Switching of perpendicular magnetization by spin-orbit torques in the absence of external magnetic fields. , 2013, Nature nanotechnology.

[29]  S. Bandiera,et al.  Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection , 2011, Nature.

[30]  H. Ohno,et al.  Time and spatial evolution of spin–orbit torque-induced magnetization switching in W/CoFeB/MgO structures with various sizes , 2018 .

[31]  C. Pai,et al.  Current-Induced Spin-Orbit Torque and Field-Free Switching in Mo -Based Magnetic Heterostructures , 2018, Physical Review Applied.

[32]  Andrew G. Glen,et al.  APPL , 2001 .

[33]  F. García-Sánchez,et al.  The design and verification of MuMax3 , 2014, 1406.7635.

[34]  H. Ohno,et al.  Magnetization switching by spin-orbit torque in an antiferromagnet-ferromagnet bilayer system. , 2015, Nature materials.