Ionic liquid-assisted hydrothermal synthesis of three-dimensional hierarchical CuO peachstone-like architectures

[1]  Ying-Jie Zhu,et al.  Synthesis of PbCrO4 and Pb2CrO5 Rods via a Microwave-Assisted Ionic Liquid Method , 2005 .

[2]  C. Feldmann,et al.  Microwave-assisted synthesis of luminescent LaPO4:Ce,Tb nanocrystals in ionic liquids. , 2006, Angewandte Chemie.

[3]  N. Kimizuka,et al.  Vesicles in Salt : Formation of Bilayer Membranes from Dialkyldimethylammonium Bromides in Ether-containing Ionic Liquids , 2002 .

[4]  Guanghou Wang,et al.  One-step, solid-state reaction to the synthesis of copper oxide nanorods in the presence of a suitable surfactant , 2001 .

[5]  Xiaodong Xu,et al.  Hydrothermal synthesis of sheaf-like CuO via ionic liquids , 2008 .

[6]  B. Liu,et al.  Mesoscale organization of CuO nanoribbons: formation of "dandelions". , 2004, Journal of the American Chemical Society.

[7]  Xintang Huang,et al.  Self-Assembled CuO Monocrystalline Nanoarchitectures with Controlled Dimensionality and Morphology , 2006 .

[8]  S. Or,et al.  Hydrothermal Synthesis of Three-Dimensional Hierarchical CuO Butterfly-Like Architectures , 2009 .

[9]  Lee,et al.  Preparation and Growth Mechanism of Uniform Colloidal Copper Oxide by the Controlled Double-Jet Precipitation , 1997, Journal of colloid and interface science.

[10]  Dmitri Golberg,et al.  Inorganic semiconductor nanostructures and their field-emission applications , 2008 .

[11]  E. Solomon,et al.  Propylene Oxidation on Copper Oxide Surfaces: Electronic and Geometric Contributions to Reactivity and Selectivity , 1998 .

[12]  Zhimin Liu,et al.  Synthesis of single-crystal gold nanosheets of large size in ionic liquids. , 2005, The journal of physical chemistry. B.

[13]  C. Hsieh,et al.  Characterizing well-ordered CuO nanofibrils synthesized through gas-solid reactions , 2004 .

[14]  M. Carter,et al.  Production of cuprous oxide, a solar cell material, by thermal oxidation and a study of its physical and electrical properties , 1998 .

[15]  H. Hou,et al.  Large-Scale Synthesis of Single-Crystalline Quasi-Aligned Submicrometer CuO Ribbons , 2005 .

[16]  R. Murray,et al.  Hybrid redox polyether melts based on polyether-tailed counterions , 1999 .

[17]  M. Antonietti,et al.  Synthesis of very small TiO2 nanocrystals in a room-temperature ionic liquid and their self-assembly toward mesoporous spherical aggregates. , 2003, Journal of the American Chemical Society.

[18]  Ying-Jie Zhu,et al.  Microwave-assisted synthesis of cupric oxide nanosheets and nanowhiskers , 2006 .

[19]  Tom Welton,et al.  Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. , 1999, Chemical reviews.

[20]  Robin D. Rogers,et al.  Room temperature ionic liquids as novel media for ‘clean’ liquid–liquid extraction , 1998 .

[21]  P. Lu,et al.  Synthesis and characterization of multipod, flower-like, and shuttle-like ZnO frameworks in ionic liquids , 2005 .

[22]  R. Welter,et al.  Electrodeposition of silver particles and gold nanoparticles from ionic liquid-crystal precursors. , 2006, Angewandte Chemie.

[23]  Wenzhong Wang,et al.  Synthesis and characterization of CuO nanowhiskers by a novel one-step, solid-state reaction in the presence of a nonionic surfactant , 2002 .

[24]  Shih-Hsuan Yang,et al.  Thermal oxidation of Cu2S nanowires: A template method for the fabrication of mesoscopic CuxO (x = 1,2) wires , 2002 .

[25]  Masakazu Higuchi,et al.  Preparation of CuO thin films on porous BaTiO3 by self-assembled multibilayer film formation and application as a CO2 sensor , 1998 .

[26]  Hua-ming Li,et al.  Oxidative Desulfurization of Fuels Catalyzed by Peroxotungsten and Peroxomolybdenum Complexes in Ionic Liquids , 2007 .

[27]  Pamela J. Martin,et al.  Aggregation behavior of aqueous solutions of ionic liquids. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[28]  K. Nakamoto Infrared spectra of inorganic and coordination compounds , 1970 .

[29]  F. Endres,et al.  Air and water stable ionic liquids in physical chemistry. , 2006, Physical chemistry chemical physics : PCCP.

[30]  Robin D. Rogers,et al.  Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation , 2001 .

[31]  M. Grätzel,et al.  Hydrophobic, Highly Conductive Ambient-Temperature Molten Salts. , 1996, Inorganic chemistry.

[32]  X. Jiao,et al.  CuO microflowers composed of nanosheets: Synthesis, characterization, and formation mechanism , 2007 .

[33]  A. Gedanken,et al.  Sonochemical Proparation and Characterization of Nanocrystalline Copper Oxide Embedded in Poly(vinyl Alcohol) and its Effect on Crystal Growth of Copper Oxide , 2001 .

[34]  P. Suarez,et al.  Physico-chemical processes in imidazolium ionic liquids. , 2006, Physical chemistry chemical physics : PCCP.

[35]  A. Mele,et al.  The local structure of ionic liquids: cation-cation NOE interactions and internuclear distances in neat [BMIM][BF4] and [BDMIM][BF4]. , 2006, Angewandte Chemie.

[36]  Robin D. Rogers,et al.  Dissolution of Cellose with Ionic Liquids , 2002 .

[37]  Yingjie Zhu,et al.  Microwave-assisted synthesis of single-crystalline tellurium nanorods and nanowires in ionic liquids. , 2004, Angewandte Chemie.

[38]  P. Novák,et al.  Relation between crystallographic microstructure and electrochemical properties of CuO for lithium cells , 1990 .

[39]  C. Hardacre,et al.  Preparation of AgX (X = Cl, I) nanoparticles using ionic liquids. , 2008, Nanotechnology.

[40]  Lide Zhang,et al.  Direct observation of the growth process of MgO nanoflowers by a simple chemical route. , 2005, Small.

[41]  J. Tarascon,et al.  Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries , 2000, Nature.

[42]  Ying-Jie Zhu,et al.  Synthesis and formation mechanism of nanoneedles and nanorods of manganese oxide octahedral molecular sieve using an ionic liquid. , 2006, The journal of physical chemistry. B.

[43]  Yau-Chen Jiang,et al.  Microwave-assisted synthesis of sulfide M2S3 (m = Bi, Sb) nanorods using an ionic liquid. , 2005, The journal of physical chemistry. B.

[44]  Yong Cao,et al.  A convenient alcohothermal approach for low temperature synthesis of CuO nanoparticles , 2002 .

[45]  Zhenjiang Miao,et al.  Facile synthesis of high quality TiO2 nanocrystals in ionic liquid via a microwave-assisted process. , 2007, Journal of the American Chemical Society.

[46]  Jun-Jie Zhu,et al.  Preparation of CuO nanoparticles by microwave irradiation , 2002 .

[47]  John T. L. Thong,et al.  Large-scale synthesis and field emission properties of vertically oriented CuO nanowire films , 2004 .

[48]  A. Taubert CuCl nanoplatelets from an ionic liquid-crystal precursor. , 2004, Angewandte Chemie.