Optimal Convergence for Time-Dependent Stokes Equation: A New Approach

In our book ”Navier-Stokes Equations in Planar Domains”, Imperial College Press, 2013, we have suggested a fourth-order compact scheme for the Navier-Stokes equations in streamfunction formulation ∂t(∆ψ)+ (∇⊥ψ) · ∇(∆ψ) = ν∆ψ. Here we present a new approach for the analysis of a high-order compact scheme for the Navier-Stokes equations in cases where the convective term vanishes, or in cases where the viscous term dominates the convective term. In these cases the Navier-Stokes equations is replaced by the time-dependent Stokes equation ∂t(∆ψ) = ν∆ ψ. The same type of fourth-order compact schemes that were proposed for the Navier-Stokes equations, may be adopted to the time-dependent Stokes problem. For these methods the truncation error is only of first-order at near-boundary points, but is of fourth order at interior points. We prove that the rate of convergence is actually four, thus the error tends to zero as O(h), where h is the size of the mesh.

[1]  C. Pozrikidis Creeping flow in two-dimensional channels , 1987, Journal of Fluid Mechanics.

[2]  Jean-Pierre Croisille,et al.  A High Order Compact Scheme for the Pure-Streamfunction Formulation of the Navier-Stokes Equations , 2010, J. Sci. Comput..

[3]  Bertil Gustafsson,et al.  The convergence rate for difference approximations to general mixed initial boundary value problems , 1981 .

[4]  Cheng Wang,et al.  Analysis of a fourth order finite difference method for the incompressible Boussinesq equations , 2004, Numerische Mathematik.

[5]  Jean-Pierre Croisille,et al.  A Fast Direct Solver for the Biharmonic Problem in a Rectangular Grid , 2008, SIAM J. Sci. Comput..

[6]  Donghyun You,et al.  A conservative finite volume method for incompressible Navier-Stokes equations on locally refined nested Cartesian grids , 2016, J. Comput. Phys..

[7]  Jean-Pierre Croisille,et al.  Navier-Stokes Equations in Planar Domains , 2013 .

[8]  Endre Süli,et al.  Optimal-Order Finite Difference Approximation of Generalized Solutions to the Biharmonic Equation in a Cube , 2019, SIAM Journal on Numerical Analysis.

[9]  M. Ben-Artzi,et al.  A pure-compact scheme for the streamfunction formulation of Navier-Stokes equations , 2005 .

[10]  J. W. Stephenson Single cell discretizations of order two and four for biharmonic problems , 1984 .

[11]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[12]  Jean-Pierre Croisille,et al.  Convergence of a Compact Scheme for the Pure Streamfunction Formulation of the Unsteady Navier-Stokes System , 2006, SIAM J. Numer. Anal..

[13]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[14]  On Numerical Boundary Conditions for the Navier-Stokes Equations , 1986 .

[15]  Dalia Fishelov,et al.  Time evolution of discrete fourth‐order elliptic operators , 2019, Numerical Methods for Partial Differential Equations.

[16]  E Weinan,et al.  Essentially Compact Schemes for Unsteady Viscous Incompressible Flows , 1996 .

[17]  Bertil Gustafsson,et al.  On Error Bounds of Finite Difference Approximations to Partial Differential Equations—Temporal Behavior and Rate of Convergence , 2000, J. Sci. Comput..

[18]  Cheng Wang,et al.  A Fourth Order Scheme for Incompressible Boussinesq Equations , 2003, J. Sci. Comput..

[19]  Cheng Wang,et al.  Analysis of finite difference schemes for unsteady Navier-Stokes equations in vorticity formulation , 2002, Numerische Mathematik.

[20]  Dalia Fishelov Semi-discrete Time-Dependent Fourth-Order Problems on an Interval: Error Estimate , 2013, ENUMATH.

[21]  A. Munnier,et al.  Vorticity and Stream Function Formulations for the 2D Navier–Stokes Equations in a Bounded Domain , 2018, Journal of Mathematical Fluid Mechanics.

[22]  P. G. Drazin,et al.  Philip Drazin and Norman Riley: The Navier–Stokes equations : a classification of flows and exact solutions , 2011, Theoretical and Computational Fluid Dynamics.

[23]  Jean-Pierre Croisille,et al.  A Cartesian Compact Scheme for the Navier-Stokes Equations in Streamfunction Formulation in Irregular Domains , 2019, J. Sci. Comput..

[24]  Jean-Pierre Croisille,et al.  Recent Advances in the Study of a Fourth-Order Compact Scheme for the One-Dimensional Biharmonic Equation , 2012, J. Sci. Comput..

[25]  W. Roger Briley,et al.  A numerical study of laminar separation bubbles using the Navier-Stokes equations , 1971, Journal of Fluid Mechanics.

[26]  Robert Krasny,et al.  Fourth‐order finite difference simulation of a differentially heated cavity , 2002 .

[27]  Gunilla Kreiss,et al.  Convergence of Summation-by-Parts Finite Difference Methods for the Wave Equation , 2015, J. Sci. Comput..

[28]  J. Nordström,et al.  Summation by Parts Operators for Finite Difference Approximations of Second-Derivatives with Variable Coefficients , 2004, Journal of Scientific Computing.

[29]  Gérard Meurant,et al.  A Review on the Inverse of Symmetric Tridiagonal and Block Tridiagonal Matrices , 1992, SIAM J. Matrix Anal. Appl..

[30]  Tao Tang,et al.  A Compact Fourth-Order Finite Difference Scheme for Unsteady Viscous Incompressible Flows , 2001, J. Sci. Comput..

[31]  H. J.,et al.  Hydrodynamics , 1924, Nature.

[32]  D. Gottlieb,et al.  The Stability of Numerical Boundary Treatments for Compact High-Order Finite-Difference Schemes , 1993 .

[33]  B. Gustafsson The convergence rate for difference approximations to mixed initial boundary value problems , 1975 .

[34]  Murli M. Gupta,et al.  A single cell high order scheme for the convection‐diffusion equation with variable coefficients , 1984 .

[35]  Graham F. Carey,et al.  Extension of high‐order compact schemes to time‐dependent problems , 2001 .

[36]  Murli M. Gupta,et al.  A streamfunction–velocity approach for 2D transient incompressible viscous flows , 2009 .

[37]  Magnus Svärd,et al.  On the convergence rates of energy-stable finite-difference schemes , 2019, J. Comput. Phys..