Modelling of free-form conformal metasurfaces

Artificial electromagnetic surfaces, metasurfaces, control light in the desired manner through the introduction of abrupt changes of electromagnetic fields at interfaces. Current modelling of metasurfaces successfully exploits generalised sheet transition conditions (GSTCs), a set of boundary conditions that account for electric and magnetic metasurface-induced optical responses. GSTCs are powerful theoretical tools but they are not readily applicable for arbitrarily shaped metasurfaces. Accurate and computationally efficient algorithms capable of implementing artificial boundary conditions are highly desired for designing free-form photonic devices. To address this challenge, we propose a numerical method based on conformal boundary optics with a modified finite difference time-domain (FDTD) approach which accurately calculates the electromagnetic fields across conformal metasurfaces. Illustrative examples of curved meta-optics are presented, showing results in good agreement with theoretical predictions. This method can become a powerful tool for designing and predicting optical functionalities of conformal metasurfaces for new lightweight, flexible and wearable photonic devices.Predicting and modelling the responses of free-from photonics devices remain challenging with conventional computational tools. Here, the authors propose an efficient algorithm based on conformal boundary optics and modified finite difference time-domain to calculate the electromagnetic fields across conformal metasurfaces.

[1]  Federico Capasso,et al.  Ultra-thin plasmonic optical vortex plate based on phase discontinuities , 2012 .

[2]  Federico Capasso,et al.  Giant birefringence in optical antenna arrays with widely tailorable optical anisotropy , 2012, Proceedings of the National Academy of Sciences.

[3]  Carlo Molardi,et al.  Controlling electromagnetic fields at boundaries of arbitrary geometries , 2016 .

[4]  Christophe Caloz,et al.  Dispersive Metasurface Sheet Analysis Using GSTC-FDTD , 2017 .

[5]  N. Zheludev,et al.  Near-infrared trapped mode magnetic resonance in an all-dielectric metamaterial. , 2013, Optics express.

[6]  Federico Capasso,et al.  Flat Optics: Controlling Wavefronts With Optical Antenna Metasurfaces , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[7]  A. Ward,et al.  Refraction and geometry in Maxwell's equations , 1996 .

[8]  A. Alú,et al.  Wave-front Transformation with Gradient Metasurfaces , 2016 .

[9]  U. Leonhardt Optical Conformal Mapping , 2006, Science.

[10]  Christophe Caloz,et al.  Simulation of Metasurfaces in Finite Difference Techniques , 2016, IEEE Transactions on Antennas and Propagation.

[11]  Qiaofeng Tan,et al.  Three-dimensional optical holography using a plasmonic metasurface , 2013, Nature Communications.

[12]  Christophe Caloz,et al.  Refracting Metasurfaces without Spurious Diffraction , 2017, 1705.09286.

[13]  Chunmei Ouyang,et al.  Broadband Metasurfaces with Simultaneous Control of Phase and Amplitude , 2014, Advanced materials.

[14]  Andrei Faraon,et al.  Planar metasurface retroreflector , 2017, Nature Photonics.

[15]  Benjamin J. M. Brenny,et al.  Controlling magnetic and electric dipole modes in hollow silicon nanocylinders. , 2016, Optics express.

[16]  Andrey E. Miroshnichenko,et al.  Directional visible light scattering by silicon nanoparticles , 2012, Nature Communications.

[17]  William L. Barnes,et al.  Plasmonic meta-atoms and metasurfaces , 2014, Nature Photonics.

[18]  William L. Barnes,et al.  Localized surface-plasmon resonances in periodic nondiffracting metallic nanoparticle and nanohole arrays , 2009 .

[19]  Federico Capasso,et al.  Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities. , 2012, Nano letters.

[20]  David R. Smith,et al.  An Overview of the Theory and Applications of Metasurfaces: The Two-Dimensional Equivalents of Metamaterials , 2012, IEEE Antennas and Propagation Magazine.

[21]  E. Tsymbal,et al.  An ultrathin invisibility skin cloak for visible light , 2022 .

[22]  J. Valentine,et al.  Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. , 2014, Nano letters.

[23]  N. Yu,et al.  Flat optics with designer metasurfaces. , 2014, Nature materials.

[24]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[25]  Metasurface Approach to External Cloak and Designer Cavities , 2018 .

[26]  S. Bozhevolnyi,et al.  Broadband focusing flat mirrors based on plasmonic gradient metasurfaces. , 2013, Nano letters.

[27]  P. Genevet,et al.  Recent advances in planar optics: from plasmonic to dielectric metasurfaces , 2017 .

[28]  Christophe Caloz,et al.  General Metasurface Synthesis Based on Susceptibility Tensors , 2014, IEEE Transactions on Antennas and Propagation.

[29]  B. Luk’yanchuk,et al.  Optically resonant dielectric nanostructures , 2016, Science.

[30]  Christophe Caloz,et al.  Generalized Sheet Transition Condition FDTD Simulation of Metasurface , 2017, IEEE Transactions on Antennas and Propagation.

[31]  Christophe Caloz,et al.  Computational Analysis of Metasurfaces , 2017, IEEE Journal on Multiscale and Multiphysics Computational Techniques.

[32]  Andrei Faraon,et al.  Decoupling optical function and geometrical form using conformal flexible dielectric metasurfaces , 2015, Nature Communications.

[33]  A. Kildishev,et al.  Planar Photonics with Metasurfaces , 2013, Science.

[34]  Erez Hasman,et al.  Formation of helical beams by use of Pancharatnam-Berry phase optical elements. , 2002, Optics letters.

[35]  Z. Jacob,et al.  All-dielectric metamaterials. , 2016, Nature nanotechnology.

[36]  Ebrahim Karimi,et al.  Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface , 2014, Light: Science & Applications.

[37]  Guofan Jin,et al.  Dispersionless phase discontinuities for controlling light propagation. , 2012, Nano letters.

[38]  Boris N. Chichkov,et al.  Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation , 2011 .

[39]  Jian-Ming Jin,et al.  Finite-Element Modeling of Metasurfaces With Generalized Sheet Transition Conditions , 2017, IEEE Transactions on Antennas and Propagation.

[40]  Fan Yang,et al.  Synthesis of Spherical Metasurfaces Based on Susceptibility Tensor GSTCs , 2019, IEEE Transactions on Antennas and Propagation.