Characterization of forests and deforestation in Cambodia using ALOS/PALSAR observation

In this study, we have demonstrated the capability of full polarimetric ALOS/Phased Array L-band Synthetic Aperture Radar data for the characterization of the forests and deforestation in Cambodia, to support climate change mitigation policies of Reducing Emission from Deforestation and Forest Degradation (REDD). We have observed mean backscattering coefficient (σ°), entropy (H), alpha angle (α), anisotropy (A), pedestal height (PH), Radar Vegetation Index (RVI) and Freeman–Durden three-component decomposition parameters. The observations show that the forest types and deforested area are showing variable polarimetric and backscattering properties because of the structural difference. Evergreen forest is characterized by a high value of σ° HV (−12.96 dB) as compared with the deforested area (σ° HV=−22.2 dB). The value of polarimetric parameters such as entropy (0.93), RVI (0.91), PH (0.41) and Freeman–Durden volume scattering (0.43) is high for evergreen forest, whereas deforested area is characterized by the low values of entropy (0.36) and RVI (0.17). Based on these parameters, it is found that σ° HV, entropy, RVI and PH provide best results among other parameters.

[1]  Steffen Kuntz,et al.  Potential of spaceborne SAR for monitoring the tropical environments , 2010 .

[2]  D. Lu The potential and challenge of remote sensing‐based biomass estimation , 2006 .

[3]  Thuy Le Toan,et al.  Relating forest biomass to SAR data , 1992, IEEE Trans. Geosci. Remote. Sens..

[4]  Robert Eckardt,et al.  Multisensor SAR analysis for forest monitoring in boreal and tropical forest environments , 2009, 2009 IEEE International Geoscience and Remote Sensing Symposium.

[5]  J. Barlow,et al.  Prospects for tropical forest biodiversity in a human-modified world. , 2009, Ecology letters.

[6]  Kamal Sarabandi,et al.  Estimation of forest biophysical characteristics in Northern Michigan with SIR-C/X-SAR , 1995, IEEE Trans. Geosci. Remote. Sens..

[7]  Manabu Watanabe,et al.  Forest Structure Dependency of the Relation Between L-Band$sigma^0$and Biophysical Parameters , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[8]  Yunjin Kim,et al.  Comparison of forest parameter estimation techniques using SAR data , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).

[9]  Masanobu Shimada,et al.  A preliminary study on deforestation monitoring in Sumatra Island by PALSAR , 2009, 2009 IEEE International Geoscience and Remote Sensing Symposium.

[10]  R. B. Jackson,et al.  CO 2 emissions from forest loss , 2009 .

[11]  Wataru Takeuchi,et al.  Full polarimetric PALSAR-based land cover monitoring in Cambodia for implementation of REDD policies , 2013, Int. J. Digit. Earth.

[12]  M. Schrope When money grows on trees , 2009 .

[13]  Iain H. Woodhouse Polarimetric radar imaging: from basics to applications by Jong-Sen Lee and Eric Pottier , 2012 .

[14]  Stephen L. Durden,et al.  A three-component scattering model for polarimetric SAR data , 1998, IEEE Trans. Geosci. Remote. Sens..

[15]  Bambang H. Trisasongko,et al.  The Use of Polarimetric SAR Data for Forest Disturbance Monitoring , 2010 .

[16]  Vincent R. Gray Climate Change 2007: The Physical Science Basis Summary for Policymakers , 2007 .

[17]  E. Pottier,et al.  Polarimetric Radar Imaging: From Basics to Applications , 2009 .

[18]  Masanobu Shimada,et al.  PALSAR Radiometric and Geometric Calibration , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[19]  Sandra A. Brown,et al.  Monitoring and estimating tropical forest carbon stocks: making REDD a reality , 2007 .

[20]  Gregory P Asner,et al.  Changing Drivers of Deforestation and New Opportunities for Conservation , 2009, Conservation biology : the journal of the Society for Conservation Biology.

[21]  Alexandre Bouvet,et al.  Estimating tropical deforestation from Earth observation data , 2010 .

[22]  Eric Pottier,et al.  An entropy based classification scheme for land applications of polarimetric SAR , 1997, IEEE Trans. Geosci. Remote. Sens..

[23]  P. Fearnside,et al.  TROPICAL DEFORESTATION AND GREENHOUSE-GAS EMISSIONS , 2004 .

[24]  Robert H. Anderson,et al.  A Source Book , 1995 .

[25]  Naoyuki Furuya,et al.  Carbon Stock Estimation by Forest Measurement Contributing to Sustainable Forest Management in Cambodia , 2010 .

[26]  Wu Yirong,et al.  An Improved Cloude-Pottier Decomposition Using H/α/SPAN and Complex Wishart Classifier for Polarimetric SAR Classification , 2006, 2006 CIE International Conference on Radar.

[27]  Q. Wang,et al.  Comparison of ALOS PALSAR RVI and Landsat TM NDVI for forest area mapping , 2009, 2009 2nd Asian-Pacific Conference on Synthetic Aperture Radar.

[28]  F. Achard,et al.  Challenges to estimating carbon emissions from tropical deforestation , 2007 .

[29]  Z. Qi,et al.  LAND USE AND LAND COVER CLASSIFICATION USING RADARSAT-2 POLARIMETRIC SAR IMAGE , 2010 .

[30]  Martin Herold,et al.  Tropical deforestation and greenhouse gas emissions , 2007 .

[31]  R. Lackey Seven pillars of ecosystem management , 1998 .

[32]  I. Woodhouse,et al.  Using satellite radar backscatter to predict above‐ground woody biomass: A consistent relationship across four different African landscapes , 2009 .

[33]  J. Kong,et al.  Retrieval of forest biomass from SAR data , 1994 .

[34]  Z. Qi,et al.  LAND USE AND LAND COVER CLASSIFICATION USING RADARSAT-2 POLARIMETRIC SAR IMAGE , 2010 .

[35]  José Claudio Mura,et al.  Evaluating the Potential of L Band PolSAR Data to Discriminate Deforestation Increment Areas in Amazon Rain Forest , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.