HIV Infection and Neurocognitive Disorders in the Context of Chronic Drug Abuse: Evidence for Divergent Findings Dependent upon Prior Drug History

[1]  Yanxun Xu,et al.  Sex Differences in Neurocognitive Function in Adults with HIV: Patterns, Predictors, and Mechanisms , 2019, Current Psychiatry Reports.

[2]  K. N. Kirchner,et al.  Selective monoaminergic and histaminergic circuit dysregulation following long-term HIV-1 protein exposure , 2019, Journal of NeuroVirology.

[3]  Arif A. Hamid,et al.  Dissociable dopamine dynamics for learning and motivation. , 2019, Nature.

[4]  C. Mactutus,et al.  Disruption of Timing: NeuroHIV Progression in the Post-cART Era , 2019, Scientific Reports.

[5]  J. Loftis,et al.  Neuroinflammation in addiction: A review of neuroimaging studies and potential immunotherapies , 2019, Pharmacology Biochemistry and Behavior.

[6]  G. Schoenbaum,et al.  Expectancy-Related Changes in Dopaminergic Error Signals Are Impaired by Cocaine Self-Administration , 2019, Neuron.

[7]  B. Lim,et al.  Cocaine-Induced Structural Plasticity in Input Regions to Distinct Cell Types in Nucleus Accumbens , 2018, Biological Psychiatry.

[8]  C. Mactutus,et al.  Synaptic Connectivity in Medium Spiny Neurons of the Nucleus Accumbens: A Sex-Dependent Mechanism Underlying Apathy in the HIV-1 Transgenic Rat , 2018, Front. Behav. Neurosci..

[9]  C. Fennema-Notestine,et al.  White matter damage, neuroinflammation, and neuronal integrity in HAND , 2018, Journal of NeuroVirology.

[10]  Jenna L. Pappalardo,et al.  Single-cell RNA sequencing reveals microglia-like cells in cerebrospinal fluid during virologically suppressed HIV. , 2018, JCI insight.

[11]  C. Mactutus,et al.  HIV-1 proteins dysregulate motivational processes and dopamine circuitry , 2018, Scientific Reports.

[12]  K. Lattal,et al.  Involvement of the dorsal hippocampus in expression and extinction of cocaine‐induced conditioned place preference , 2018, Hippocampus.

[13]  R. Wise,et al.  Drive and Reinforcement Circuitry in the Brain: Origins, Neurotransmitters, and Projection Fields , 2018, Neuropsychopharmacology.

[14]  M. Lynch,et al.  Inflammatory microglia are glycolytic and iron retentive and typify the microglia in APP/PS1 mice , 2018, Brain, Behavior, and Immunity.

[15]  S. Lammel,et al.  Nucleus Accumbens Subnuclei Regulate Motivated Behavior via Direct Inhibition and Disinhibition of VTA Dopamine Subpopulations , 2018, Neuron.

[16]  D. Maric,et al.  Cross-sectional and longitudinal small animal PET shows pre and post-synaptic striatal dopaminergic deficits in an animal model of HIV. , 2017, Nuclear medicine and biology.

[17]  M. Javadi-Paydar,et al.  HIV-1 and cocaine disrupt dopamine reuptake and medium spiny neurons in female rat striatum , 2017, PloS one.

[18]  S. Buch,et al.  Cocaine-Mediated Downregulation of miR-124 Activates Microglia by Targeting KLF4 and TLR4 Signaling , 2017, Molecular Neurobiology.

[19]  C. Sell,et al.  Fate of microglia during HIV‐1 infection: From activation to senescence? , 2017, Glia.

[20]  G. Williams,et al.  Disrupted iron regulation in the brain and periphery in cocaine addiction , 2017, Translational Psychiatry.

[21]  J. Becker,et al.  Sex differences in addiction , 2016, Dialogues in clinical neuroscience.

[22]  Lu Yang,et al.  Multiple Faceted Roles of Cocaine in Potentiation of HAND. , 2016, Current HIV research.

[23]  C. Mactutus,et al.  Progression of temporal processing deficits in the HIV-1 transgenic rat , 2016, Scientific Reports.

[24]  W. Schultz Dopamine reward prediction error coding , 2016, Dialogues in clinical neuroscience.

[25]  B. Skinner,et al.  The Behavior of Organisms: An Experimental Analysis , 2016 .

[26]  Amit Singh,et al.  Glucose Metabolism in T Cells and Monocytes: New Perspectives in HIV Pathogenesis , 2016, EBioMedicine.

[27]  Thomas J. Davidson,et al.  In vivo imaging identifies temporal signature of D1 and D2 medium spiny neurons in cocaine reward , 2016, Proceedings of the National Academy of Sciences.

[28]  W. Blattner,et al.  Associations between Cognition, Gender and Monocyte Activation among HIV Infected Individuals in Nigeria , 2016, PloS one.

[29]  S. Woods,et al.  Apathy is associated with lower mental and physical quality of life in persons infected with HIV , 2016, Psychology, health & medicine.

[30]  K. Jansen,et al.  Cocaine abuse and effects in the serum levels of cytokines IL-6 and IL-10. , 2016, Drug and alcohol dependence.

[31]  W. Honer,et al.  White matter deficits assessed by diffusion tensor imaging and cognitive dysfunction in psychostimulant users with comorbid human immunodeficiency virus infection , 2015, BMC Research Notes.

[32]  L. Uddin,et al.  Neuropathological sequelae of Human Immunodeficiency Virus and apathy: A review of neuropsychological and neuroimaging studies , 2015, Neuroscience & Biobehavioral Reviews.

[33]  Lu Yang,et al.  Cocaine-mediated microglial activation involves the ER stress-autophagy axis , 2015, Autophagy.

[34]  I. Grant,et al.  Cerebrospinal fluid metabolomics implicate bioenergetic adaptation as a neural mechanism regulating shifts in cognitive states of HIV-infected patients , 2015, AIDS.

[35]  W. Banks,et al.  Role of the immune system in HIV-associated neuroinflammation and neurocognitive implications , 2015, Brain, Behavior, and Immunity.

[36]  Robert K. Heaton,et al.  HIV Infection Is Associated with Attenuated Frontostriatal Intrinsic Connectivity: A Preliminary Study , 2015, Journal of the International Neuropsychological Society.

[37]  Rita Z. Goldstein,et al.  Impaired Neural Response to Negative Prediction Errors in Cocaine Addiction , 2015, The Journal of Neuroscience.

[38]  C. Mactutus,et al.  HIV-1 proteins, Tat and gp120, target the developing dopamine system. , 2015, Current HIV research.

[39]  Gregory G. Brown,et al.  Apathy is associated with white matter abnormalities in anterior, medial brain regions in persons with HIV infection , 2014, Journal of clinical and experimental neuropsychology.

[40]  R. F. Roscoe,et al.  HIV-1 Transgenic Female Rat: Synaptodendritic Alterations of Medium Spiny Neurons in the Nucleus Accumbens , 2014, Journal of Neuroimmune Pharmacology.

[41]  Peter A. Groblewski,et al.  Excessive cocaine use results from decreased phasic dopamine signaling in the striatum , 2014, Nature Neuroscience.

[42]  Matthijs Vink,et al.  HIV infection and the fronto–striatal system: a systematic review and meta-analysis of fMRI studies , 2014, AIDS.

[43]  D. Brooks,et al.  Increased microglia activation in neurologically asymptomatic HIV-infected patients receiving effective ART , 2014, AIDS.

[44]  R. Wise,et al.  The Development and Maintenance of Drug Addiction , 2014, Neuropsychopharmacology.

[45]  M. Tremblay,et al.  Ultrastructure of microglia-synapse interactions in the HIV-1 Tat-injected murine central nervous system , 2013, Communicative & integrative biology.

[46]  Jeannette R. Mahoney,et al.  Apathy correlates with cognitive performance, functional disability, and HIV RNA plasma levels in HIV-positive individuals , 2013, Journal of clinical and experimental neuropsychology.

[47]  G. Rebec,et al.  Role of the Major Glutamate Transporter GLT1 in Nucleus Accumbens Core Versus Shell in Cue-Induced Cocaine-Seeking Behavior , 2013, The Journal of Neuroscience.

[48]  E. Masliah,et al.  Molecular and pathologic insights from latent HIV-1 infection in the human brain , 2013, Neurology.

[49]  T. Krahe,et al.  Synaptic Dysfunction in the Hippocampus Accompanies Learning and Memory Deficits in Human Immunodeficiency Virus Type-1 Tat Transgenic Mice , 2013, Biological Psychiatry.

[50]  K. Fuxe,et al.  LC/MS/MS evaluation of cocaine and its metabolites in different brain areas, peripheral organs and plasma in cocaine self-administering rats , 2012, Pharmacological reports : PR.

[51]  I. Grant,et al.  Implications of apathy for everyday functioning outcomes in persons living with HIV infection. , 2012, Archives of clinical neuropsychology : the official journal of the National Academy of Neuropsychologists.

[52]  A. Gomez,et al.  HIV-1 Tat Protein Decreases Dopamine Transporter Cell Surface Expression and Vesicular Monoamine Transporter-2 Function in Rat Striatal Synaptosomes , 2012, Journal of Neuroimmune Pharmacology.

[53]  G. Koob,et al.  Allostasis and addiction: Role of the dopamine and corticotropin-releasing factor systems , 2012, Physiology & Behavior.

[54]  R. Sinha,et al.  Immune system inflammation in cocaine dependent individuals: implications for medications development , 2012, Human psychopharmacology.

[55]  F. Noble,et al.  Transfer of Neuroplasticity from Nucleus Accumbens Core to Shell Is Required for Cocaine Reward , 2012, PloS one.

[56]  Honghong Yao,et al.  Cocaine and HIV-1 Interplay: Molecular Mechanisms of Action and Addiction , 2011, Journal of Neuroimmune Pharmacology.

[57]  V. Purohit,et al.  Drugs of Abuse, Dopamine, and HIV-Associated Neurocognitive Disorders/HIV-Associated Dementia , 2011, Molecular Neurobiology.

[58]  E. Daar Faculty Opinions recommendation of HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: CHARTER Study. , 2011 .

[59]  R. Ownby,et al.  Human immunodeficiency virus type 1 in the central nervous system leads to decreased dopamine in different regions of postmortem human brains , 2009, Journal of NeuroVirology.

[60]  J. M. Silvers,et al.  Dopaminergic marker proteins in the substantia nigra of human immunodeficiency virus type 1-infected brains , 2006, Journal of NeuroVirology.

[61]  P. Maruff,et al.  Prevalence and pattern of neuropsychological impairment in human immunodeficiency virus-infected/acquired immunodeficiency syndrome (HIV/AIDS) patients across pre- and post-highly active antiretroviral therapy eras: A combined study of two cohorts , 2011, Journal of NeuroVirology.

[62]  Frederick A. Schmitt,et al.  Acceleration of HIV dementia with methamphetamine and cocaine , 2011, Journal of NeuroVirology.

[63]  C. Meade,et al.  Neurocognitive impairment and medication adherence in HIV patients with and without cocaine dependence , 2011, Journal of Behavioral Medicine.

[64]  R. Ownby,et al.  Human immunodeficiency virus infection in the CNS and decreased dopamine availability: relationship with neuropsychological performance , 2011, Journal of NeuroVirology.

[65]  Dan J Stein,et al.  White matter correlates of apathy in HIV-positive subjects: a diffusion tensor imaging study. , 2010, The Journal of neuropsychiatry and clinical neurosciences.

[66]  G. Koob Neurobiological substrates for the dark side of compulsivity in addiction , 2009, Neuropharmacology.

[67]  C. Hinkin,et al.  Functional Consequences of HIV-Associated Neuropsychological Impairment , 2009, Neuropsychology Review.

[68]  W. Mcbride,et al.  Differential effects of dopamine D2 and GABAA receptor antagonists on dopamine neurons between the anterior and posterior ventral tegmental area of female Wistar rats , 2009, Pharmacology Biochemistry and Behavior.

[69]  J. Fadel,et al.  The human immunodeficiency virus-1–associated protein, Tat1-86, impairs dopamine transporters and interacts with cocaine to reduce nerve terminal function: A no-net-flux microdialysis study , 2009, Neuroscience.

[70]  E. Budygin,et al.  Dopamine Uptake Changes Associated with Cocaine Self-Administration , 2008, Neuropsychopharmacology.

[71]  H. Diener,et al.  Substantia nigra hyperechogenicity and CSF dopamine depletion in HIV , 2008, Journal of Neurology.

[72]  D. Wallace,et al.  HIV-1 Tat Protein-Induced Rapid and Reversible Decrease in [ 3 H]Dopamine Uptake: Dissociation of [ 3 H]Dopamine Uptake and [ 3 H]2 (cid:1) -Carbomethoxy-3- (cid:1) -(4-fluorophenyl)tropane (WIN 35,428) Binding in Rat Striatal Synaptosomes , 2009 .

[73]  K. Berridge,et al.  The incentive sensitization theory of addiction: some current issues , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[74]  C. Mactutus,et al.  Intra-accumbal Tat1–72 alters acute and sensitized responses to cocaine , 2008, Pharmacology Biochemistry and Behavior.

[75]  Thomas Ernst,et al.  Decreased brain dopamine transporters are related to cognitive deficits in HIV patients with or without cocaine abuse , 2008, NeuroImage.

[76]  M. Ferris,et al.  Neurotoxic profiles of HIV, psychostimulant drugs of abuse, and their concerted effect on the brain: Current status of dopamine system vulnerability in NeuroAIDS , 2008, Neuroscience & Biobehavioral Reviews.

[77]  M. Le Moal,et al.  Addiction and the brain antireward system. , 2008, Annual review of psychology.

[78]  P. Levitt,et al.  Pharmacokinetic profile of cocaine following intravenous administration in the female rabbit. , 2007, European journal of pharmacology.

[79]  K. Berridge The debate over dopamine’s role in reward: the case for incentive salience , 2007, Psychopharmacology.

[80]  B. Dubois,et al.  Apathy and the functional anatomy of the prefrontal cortex-basal ganglia circuits. , 2006, Cerebral cortex.

[81]  A. Nath,et al.  HIV-1 Tat neurotoxicity in primary cultures of rat midbrain fetal neurons: Changes in dopamine transporter binding and immunoreactivity , 2006, Neuroscience Letters.

[82]  I. Grant,et al.  Additive Deleterious Effects of Methamphetamine Dependence and Immunosuppression on Neuropsychological Functioning in HIV Infection , 2006, AIDS and Behavior.

[83]  A. Bechara Decision making, impulse control and loss of willpower to resist drugs: a neurocognitive perspective , 2005, Nature Neuroscience.

[84]  G. Screaton,et al.  HIV-1 Nef down-regulates the hemochromatosis protein HFE, manipulating cellular iron homeostasis. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[85]  D. Tate,et al.  Apathy is associated with volume of the nucleus accumbens in patients infected with HIV. , 2005, The Journal of neuropsychiatry and clinical neurosciences.

[86]  D. Stuss,et al.  Apathy: why care? , 2005, The Journal of neuropsychiatry and clinical neurosciences.

[87]  Linda Chang,et al.  Additive effects of HIV and chronic methamphetamine use on brain metabolite abnormalities. , 2005, The American journal of psychiatry.

[88]  Linda J. Porrino,et al.  Functional consequences of acute cocaine treatment depend on route of administration , 2005, Psychopharmacology.

[89]  N. Volkow,et al.  Decreased brain dopaminergic transporters in HIV-associated dementia patients. , 2004, Brain : a journal of neurology.

[90]  I. Grant,et al.  Methamphetamine dependence increases risk of neuropsychological impairment in HIV infected persons , 2004, Journal of the International Neuropsychological Society.

[91]  M. Rosenblum,et al.  Microglia in the giant cell encephalitis of acquired immune deficiency syndrome: proliferation, infection and fusion , 2004, Acta Neuropathologica.

[92]  S. Bennett,et al.  The estrous cycle affects cocaine self-administration on a progressive ratio schedule in rats , 2004, Psychopharmacology.

[93]  P. Kalivas,et al.  Prefrontal Glutamate Release into the Core of the Nucleus Accumbens Mediates Cocaine-Induced Reinstatement of Drug-Seeking Behavior , 2003, The Journal of Neuroscience.

[94]  R. Wightman,et al.  Subsecond dopamine release promotes cocaine seeking , 2003, Nature.

[95]  G. Garden Microglia in human immunodeficiency virus‐associated neurodegeneration , 2002, Glia.

[96]  G. Koob,et al.  Neurobiological evidence for hedonic allostasis associated with escalating cocaine use , 2002, Nature Neuroscience.

[97]  A. Nieoullon Dopamine and the regulation of cognition and attention , 2002, Progress in Neurobiology.

[98]  Arthur W. Blume,et al.  Negative reinforcement and substance abuse: Using a behavioral conceptualization to enhance treatment. , 2001 .

[99]  G. Koob,et al.  Drug Addiction, Dysregulation of Reward, and Allostasis , 2001, Neuropsychopharmacology.

[100]  R. Laranjeira,et al.  Transitions in the route of cocaine administration--characteristics, direction and associated variables. , 1999, Addiction.

[101]  Jane S. Paulsen,et al.  Apathy is not depression. , 1998, The Journal of neuropsychiatry and clinical neurosciences.

[102]  S. J. Gatley,et al.  Decreased striatal dopaminergic responsiveness in detoxified cocaine-dependent subjects , 1997, Nature.

[103]  Peter Dayan,et al.  A Neural Substrate of Prediction and Reward , 1997, Science.

[104]  A. Nath,et al.  HIV dementia and the basal ganglia. , 1997, Intervirology.

[105]  A. Lehner,et al.  Dose-response cocaine pharmacokinetics and metabolite profile following intravenous administration and arterial sampling in unanesthetized, freely moving male rats. , 1997, Neurotoxicology and teratology.

[106]  S. Evans,et al.  Arterial and venous cocaine plasma concentrations in humans: relationship to route of administration, cardiovascular effects and subjective effects. , 1996, The Journal of pharmacology and experimental therapeutics.

[107]  B. Levin,et al.  Cerebrospinal fluid dopamine in HIV‐1 infection , 1994, AIDS.

[108]  D. Dickson,et al.  Microglia and cytokines in neurological disease, with special reference to AIDS and Alzheimer's disease , 1993, Glia.

[109]  B. Rounsaville,et al.  Gender differences in cocaine use and treatment response. , 1993, Journal of substance abuse treatment.

[110]  S. Sesack,et al.  Prefrontal cortical efferents in the rat synapse on unlabeled neuronal targets of catecholamine terminals in the nucleus accumbens septi and on dopamine neurons in the ventral tegmental area , 1992, The Journal of comparative neurology.

[111]  M. Farrell Cocaine and HIV. , 1991, BMJ.

[112]  E. Tramont,et al.  The human immunodeficiency virus. , 1991, Dermatologic clinics.

[113]  N. Volkow,et al.  Effects of chronic cocaine abuse on postsynaptic dopamine receptors. , 1990, The American journal of psychiatry.

[114]  R. Rescorla A Pavlovian Analysis of Goal-Directed Behavior. , 1987 .

[115]  B. Levy,et al.  Histopathological evaluation of cocaine‐induced skin lesions in the rat , 1982, Journal of cutaneous pathology.

[116]  C. Kornetsky,et al.  Euphorigenic drugs: effects on the reward pathways of the brain. , 1979, Federation proceedings.

[117]  R. Solomon,et al.  An opponent-process theory of motivation. I. Temporal dynamics of affect. , 1974, Psychological review.

[118]  James L Olds,et al.  Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. , 1954, Journal of comparative and physiological psychology.