The Direct Detection and Characterization of M-dwarf Planets Using Light Echoes

Exoplanets orbiting M-dwarf stars are a prime target in the search for life in the universe. M-dwarf stars are active, with powerful flares that could adversely impact prospects for life, though there are counter-arguments. Here, we turn flaring to advantage and describe ways in which it can be used to enhance the detectability of planets, in the absence of transits or a coronagraph, significantly expanding the accessible discovery and characterization space. Flares produce brief bursts of intense luminosity, after which the star dims. Due to the light travel time between the star and planet, the planet receives the high-intensity pulse, which it re-emits through scattering (a light echo) or intrinsic emission when the star is much fainter, thereby increasing the planet’s detectability. The planet’s light-echo emission can potentially be discriminated from that of the host star by means of a time delay, Doppler shift, spatial shift, and polarization, each of which can improve the contrast of the planet to the star. Scattered light can reveal the albedo spectrum of the planet to within a size scale factor, and is likely to be polarized. Intrinsic emission mechanisms include fluorescent pumping of multiple molecular hydrogen and neutral oxygen lines by intense Lyα and Lyβ flare emission, recombination radiation of ionized and photodissociated species, and atmospheric processes such as terrestrial upper atmosphere airglow and near-infrared hydroxyl emission. We discuss the feasibility of detecting light echoes and find that light echo detection is possible under favorable circumstances.

[1]  M. López‐Puertas,et al.  ALMA Discovery of Dust Belts around Proxima Centauri , 2017, 1711.00578.

[2]  Kevin France,et al.  The LUVOIR Ultraviolet Multi-Object Spectrograph (LUMOS): instrument definition and design , 2017, Optical Engineering + Applications.

[3]  F. Bouchy,et al.  The HARPS search for southern extra-solar planets XLII. A system of Earth-mass planets around the nearby M dwarf YZ Ceti , 2017, 1708.03336.

[4]  S. Matthews,et al.  Beam electrons as a source of Hα flare ribbons , 2017, Nature Communications.

[5]  Ignasi Ribas,et al.  The full spectral radiative properties of Proxima Centauri , 2017, 1704.08449.

[6]  Joseph E. Rodriguez,et al.  A temperate rocky super-Earth transiting a nearby cool star , 2017, Nature.

[7]  D. Ehrenreich,et al.  Strong H i Lyman-α variations from an 11 Gyr-old host star: a planetary origin? , 2017, 1703.00504.

[8]  N. Goldenfeld,et al.  Noise-induced symmetry breaking far from equilibrium and the emergence of biological homochirality. , 2017, Physical review. E.

[9]  D.Queloz,et al.  Reconnaissance of the TRAPPIST-1 exoplanet system in the Lyman-α line , 2017, 1702.07004.

[10]  C. S. Fernandes,et al.  Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1 , 2017, Nature.

[11]  D. Apai,et al.  Probabilistic Constraints on the Mass and Composition of Proxima b , 2017, 1702.02542.

[12]  É. Bolmont,et al.  Water loss from terrestrial planets orbiting ultracool dwarfs: implications for the planets of TRAPPIST-1 , 2016, 1605.00616.

[13]  S. Kane,et al.  ON THE ORBITAL INCLINATION OF PROXIMA CENTAURI b , 2016, 1612.02872.

[14]  David P. Fleming,et al.  The Pale Green Dot: A Method to Characterize Proxima Centauri b Using Exo-Aurorae , 2016, 1609.09075.

[15]  X. Delfosse,et al.  Atmospheric characterization of Proxima b by coupling the Sphere high-contrast imager to the Espresso spectrograph , 2016, 1609.03082.

[16]  L. F. Sarmiento,et al.  A terrestrial planet candidate in a temperate orbit around Proxima Centauri , 2016, Nature.

[17]  Jaymie M. Matthews,et al.  MOST OBSERVATIONS OF OUR NEAREST NEIGHBOR: FLARES ON PROXIMA CENTAURI , 2016, 1608.06672.

[18]  Ignasi Ribas,et al.  The habitability of Proxima Centauri b II. Possible climates and Observability , 2016, 1608.06827.

[19]  S. Hawley,et al.  M DWARF FLARE CONTINUUM VARIATIONS ON ONE-SECOND TIMESCALES: CALIBRATING AND MODELING OF ULTRACAM FLARE COLOR INDICES , 2016, 1602.04879.

[20]  K. Covey,et al.  PHOTO-REVERBERATION MAPPING OF A PROTOPLANETARY ACCRETION DISK AROUND A T TAURI STAR , 2016, 1603.06000.

[21]  N. Goldenfeld,et al.  Noise-Induced Mechanism for Biological Homochirality of Early Life Self-Replicators. , 2015, Physical review letters.

[22]  David M. Harrington,et al.  Remote sensing of life: polarimetric signatures of photosynthetic pigments as sensitive biomarkers , 2015, International Journal of Astrobiology.

[23]  Peter G. Tuthill,et al.  Predicting exoplanet observability in time, contrast, separation, and polarization, in scattered light , 2015, 1505.03082.

[24]  Remko Stuik,et al.  Combining high-dispersion spectroscopy with high contrast imaging : Probing rocky planets around our nearest neighbors , 2015, 1503.01136.

[25]  D. Charbonneau,et al.  THE OCCURRENCE OF POTENTIALLY HABITABLE PLANETS ORBITING M DWARFS ESTIMATED FROM THE FULL KEPLER DATASET AND AN EMPIRICAL MEASUREMENT OF THE DETECTION SENSITIVITY , 2015, 1501.01623.

[26]  J. Hough,et al.  Polarimetry of Stars and Planetary Systems: Astrobiology , 2015 .

[27]  Russell Deitrick,et al.  KEPLER FLARES. I. ACTIVE AND INACTIVE M DWARFS , 2014, 1410.7779.

[28]  Miguel de Val-Borro,et al.  HATS-6b: A WARM SATURN TRANSITING AN EARLY M DWARF STAR, AND A SET OF EMPIRICAL RELATIONS FOR CHARACTERIZING K AND M DWARF PLANET HOSTS , 2014, 1408.1758.

[29]  Evgenya L. Shkolnik,et al.  HAZMAT. I. THE EVOLUTION OF FAR-UV AND NEAR-UV EMISSION FROM EARLY M STARS , 2014, 1407.1344.

[30]  Kevin France,et al.  FLUCTUATIONS AND FLARES IN THE ULTRAVIOLET LINE EMISSION OF COOL STARS: IMPLICATIONS FOR EXOPLANET TRANSIT OBSERVATIONS , 2014, 1402.0073.

[31]  K. Cahoy,et al.  THE ATMOSPHERES OF EARTHLIKE PLANETS AFTER GIANT IMPACT EVENTS , 2014, 1401.1499.

[32]  Drake Deming,et al.  Clouds in the atmosphere of the super-Earth exoplanet GJ 1214b , 2013, Nature.

[33]  J. Zuluaga,et al.  THE INFLUENCE OF THERMAL EVOLUTION IN THE MAGNETIC PROTECTION OF TERRESTRIAL PLANETS , 2013, 1304.2909.

[34]  R. Poole,et al.  FINDING EXTRATERRESTRIAL LIFE USING GROUND-BASED HIGH-DISPERSION SPECTROSCOPY , 2013, 1302.3251.

[35]  Kevin France,et al.  COMPUTING INTRINSIC LYα FLUXES OF F5 V TO M5 V STARS , 2013, 1301.5711.

[36]  Kevin France,et al.  THE ULTRAVIOLET RADIATION ENVIRONMENT AROUND M DWARF EXOPLANET HOST STARS , 2012, 1212.4833.

[37]  J. Davenport,et al.  TIME-RESOLVED PROPERTIES AND GLOBAL TRENDS IN dMe FLARES FROM SIMULTANEOUS PHOTOMETRY AND SPECTRA , 2013, 1307.2099.

[38]  D. M. Stam,et al.  Looking for the rainbow on exoplanets covered by liquid and icy water clouds , 2012, 1211.1293.

[39]  I. Ribas,et al.  THE EVOLUTION OF SOLAR FLUX FROM 0.1 nm TO 160 μm: QUANTITATIVE ESTIMATES FOR PLANETARY STUDIES , 2012 .

[40]  S. Hawley,et al.  MOST Observations of the Flare Star AD Leo , 2012, 1206.5019.

[41]  Kevin France,et al.  TIME-RESOLVED ULTRAVIOLET SPECTROSCOPY OF THE M-DWARF GJ 876 EXOPLANETARY SYSTEM , 2012, 1204.1976.

[42]  Sara Seager,et al.  ATMOSPHERIC RETRIEVAL FOR SUPER-EARTHS: UNIQUELY CONSTRAINING THE ATMOSPHERIC COMPOSITION WITH TRANSMISSION SPECTROSCOPY , 2012, 1203.4018.

[43]  F. Allard,et al.  Models of very-low-mass stars, brown dwarfs and exoplanets , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[44]  Models of Stars, Brown Dwarfs and Exoplanets , 2011 .

[45]  K. Cahoy,et al.  EXOPLANET ALBEDO SPECTRA AND COLORS AS A FUNCTION OF PLANET PHASE, SEPARATION, AND METALLICITY , 2010, 1009.3071.

[46]  J. Ortiz,et al.  Observation of light echoes around very young stars , 2010, 1007.2556.

[47]  C. R. Philbrick,et al.  LIGHT SCATTERING FROM EXOPLANET OCEANS AND ATMOSPHERES , 2010, 1006.3525.

[48]  S. Hawley,et al.  The effect of a strong stellar flare on the atmospheric chemistry of an earth-like planet orbiting an M dwarf. , 2010, Astrobiology.

[49]  Cynthia S. Froning,et al.  SEARCHING FOR FAR-ULTRAVIOLET AURORAL/DAYGLOW EMISSION FROM HD 209458b , 2010 .

[50]  Feng Chen,et al.  Detection of circular polarization in light scattered from photosynthetic microbes , 2009, Proceedings of the National Academy of Sciences.

[51]  Peter Plavchan,et al.  NEW DEBRIS DISKS AROUND YOUNG, LOW-MASS STARS DISCOVERED WITH THE SPITZER SPACE TELESCOPE , 2009, 0904.0819.

[52]  D. M. Stam,et al.  Spectropolarimetric signatures of Earth-like extrasolar planets , 2007, 0707.3905.

[53]  D. Charbonneau,et al.  The Dynamics-Based Approach to Studying Terrestrial Exoplanets , 2007, 0706.1047.

[54]  Jeremy Bailey,et al.  Rainbows, polarization, and the search for habitable planets. , 2007, Astrobiology.

[55]  J. Kasting,et al.  M stars as targets for terrestrial exoplanet searches and biosignature detection. , 2007, Astrobiology.

[56]  Ignasi Ribas,et al.  Coronal mass ejection (CME) activity of low mass M stars as an important factor for the habitability of terrestrial exoplanets. I. CME impact on expected magnetospheres of Earth-like exoplanets in close-in habitable zones. , 2007, Astrobiology.

[57]  H. Lichtenegger,et al.  Coronal mass ejection (CME) activity of low mass M stars as an important factor for the habitability of terrestrial exoplanets. II. CME-induced ion pick up of Earth-like exoplanets in close-in habitable zones. , 2007, Astrobiology.

[58]  S. Hawley,et al.  Near‐Ultraviolet Spectra of Flares on YZ CMi , 2006, astro-ph/0611074.

[59]  M. Bessell Standard Photometric Systems , 2005 .

[60]  R. Beebe Jupiter: The Planet, Satellites and Magnetosphere , 2005 .

[61]  J. Hovenier,et al.  Using polarimetry to detect and characterize Jupiter-like extrasolar planets , 2004 .

[62]  Peter W. A. Roming,et al.  The Swift Ultra-Violet/Optical Telescope , 2002, SPIE Optics + Photonics.

[63]  Timothy Edward Dowling,et al.  Jupiter : the planet, satellites, and magnetosphere , 2004 .

[64]  S. Hawley,et al.  Multiwavelength Observations of Flares on AD Leonis , 2003 .

[65]  Gordon A. H. Walker,et al.  The MOST Asteroseismology Mission: Ultraprecise Photometry from Space , 2003 .

[66]  M. Audard,et al.  X-Ray Evidence for Flare Density Variations and Continual Chromospheric Evaporation in Proxima Centauri , 2002, astro-ph/0210190.

[67]  H. Ford,et al.  Imaging Spectroscopy for Extrasolar Planet Detection , 2002, astro-ph/0209078.

[68]  A. Cameron,et al.  A search for starlight reflected from ν And's innermost planet , 2001, astro-ph/0110577.

[69]  V. Kashyap,et al.  Extreme-Ultraviolet Flare Activity in Late-Type Stars , 2000 .

[70]  V. Kashyap,et al.  EUV Flare Activity in Late-Type Stars , 2000, astro-ph/0005062.

[71]  Suzanne L. Hawley,et al.  New light on dark stars : red dwarfs, low-mass stars, brown dwarfs , 2000 .

[72]  C P McKay,et al.  Thermal structure of Uranus' atmosphere. , 1999, Icarus.

[73]  S. Jha,et al.  Spectral Line Distortions in the Presence of a Close-in Planet , 1998, astro-ph/9809099.

[74]  Stuart Bowyer,et al.  The 1997 reference of diffuse night sky brightness , 1998 .

[75]  M. Güdel Are Coronae of Magnetically Active Stars Heated by Flares? , 1997, astro-ph/0312405.

[76]  S. Hawley,et al.  Simultaneous Extreme-Ultraviolet Explorer and Optical Observations of Ad Leonis: Evidence for Large Coronal Loops and the Neupert Effect in Stellar Flares , 1995 .

[77]  W. Sparks A DIRECT WAY TO MEASURE THE DISTANCES OF GALAXIES , 1994 .

[78]  E. Gaidos Light Echo Detection of Circumstellar Disks around Flaring Stars , 1994 .

[79]  J. Kasting,et al.  Habitable zones around main sequence stars. , 1993, Icarus.

[80]  Detecting faint echoes in stellar-flare light curves , 1992 .

[81]  Michael S. Bessell,et al.  The Late M Dwarfs , 1991 .

[82]  C. McKay,et al.  The thermal structure of Titan's atmosphere. , 1989, Icarus.

[83]  A. Crotts Discovery of Optical Echoes from Supernova 1987A: New Probes of the Large Magellanic Cloud , 1988 .

[84]  T. Moffett,et al.  UV Ceti stars: statistical analysis of observational data. , 1976 .

[85]  E. Argyle On the Observability of Extrasolar Planetary Systems , 1974 .

[86]  T. Moffett,et al.  High time resolution studies of UV Ceti. , 1973 .

[87]  G WALD,et al.  THE ORIGIN OF OPTICAL ACTIVITY , 1957, Annals of the New York Academy of Sciences.

[88]  H. Shapley Note on the light variations of Proxima Centauri , 1954 .