On the Chemical Composition of Sepiolite and Palygorskite

Many studies of the chemical composition of sepiolite and palygorskite have been carried out using analytical electron microscopy (AEM). According to the literature, a compositional gap exists between sepiolites and palygorskites, but the results presented here show that they may all be intermediate compositions between two extremes. The results of >1000 AEM analyses and structural formulae have been obtained for the samples studied (22 samples of sepiolite and 21 samples of palygorskite) and indicate that no compositional gap exists between sepiolite and palygorskite. Sepiolite occupies the most magnesic and trioctahedral extreme and palygorskite the most aluminic-magnesic and dioctahedral extreme. Sepiolite and palygorskite with intermediate compositions exist between the two pure extremes: (1) sepiolite with a small proportion of octahedral substitution; (2) palygorskite with a very wide range of substitution (the pure dioctahedral extreme is unusual); and (3) intermediate forms, Al-sepiolite and Mg-palygorskite with similar or the same chemical composition. The chemical compositions of the intermediate forms can be so similar that a certain degree of polymorphism exists between Al-sepiolite and Mg-palygorskite.

[1]  G. W. Lorimer,et al.  Analytical Electron Microscopy of Minerals , 1976 .

[2]  J. Duplay,et al.  Textural Transition and Genetic Relationship between Precursor Stevensite and Sepiolite in Lacustrine Sediments (Jbel Rhassoul, Morocco) , 1997 .

[3]  P. F. Hach-Alí,et al.  Mineralogical and Geochemical Characterization of Palygorskite from Gabasa (NE Spain). Evidence of a Detrital Precursor , 1996, Clay Minerals.

[4]  A. Delgado,et al.  Geochemistry of Spanish sepiolite-palygorskite deposits: Genetic considerations based on trace elements and isotopes☆☆☆ , 1994 .

[5]  W. F. Bradley,et al.  The structural scheme of attapulgite , 1939 .

[6]  J. Post,et al.  Varied forms of palygorskite and sepiolite from different geologic systems , 2007 .

[7]  P. Heaney,et al.  Synchrotron powder X-ray diffraction study of the structure and dehydration behavior of sepiolite , 2006 .

[8]  Z. hui Acta geologica sinica , 1988 .

[9]  A. Singer,et al.  Pedogenic Palygorskite Occurrences in Australia , 1974 .

[10]  F. Elsass,et al.  Evidence of a Precursor in the Neoformation of Palygorskite — New Data by Analytical Electron Microscopy , 1994, Clay Minerals.

[11]  K. He,et al.  Crystallochemistry of Fe-rich palygorskite from eastern China , 2007, Clay Minerals.

[12]  J. Duplay,et al.  Octahedral Compositions of Individual Particles in Smectite-Palygorskite and Smectite-Sepiolite Assemblages , 1985 .

[13]  M. Suárez,et al.  Macroscopic palygorskite from Lisbom Volcanic Complex , 2006 .

[14]  M. Ross,et al.  Loughlinite, a new hydrous sodium magnesium silicate , 1960 .

[15]  S. Petit,et al.  Infrared evidence of dioctahedral-trioctahedral site occupancy in palygorskite , 2002 .

[16]  M. Barrios,et al.  Characteristics of a Mg-palygorskite in Miocene rocks, Madrid Basin (Spain) , 2004 .

[17]  E. Galán,et al.  A New Approach to Compositional Limits for Sepiolite and Palygorskite , 1999 .

[18]  Influence of the Chemical Composition and Textural Characteristics of Palygorskite on the Acid Leaching of Octahedral Cations , 1987 .

[19]  Ö. Ece Diagenetic transformation of magnesite pebbles and cobbles to sepiolite (Meerschaum) in the Miocene Eskisehir lacustrine basin, Turkey , 1998 .

[20]  C. E. Weaver,et al.  The chemistry of clay minerals , 1973 .

[21]  G. Brown,et al.  The chemical constitution of clays. , 1987 .

[22]  J. Martín-Vivaldi Contribution to the Study of Sepiolite: II. Some Considerations Regarding the Mineralogical Formula1 , 1955 .

[23]  G. Springer Falcondoite, nickel analogue of sepiolite , 1976 .

[24]  M. Rio,et al.  The effect of the octahedral cations on the dimensions of the palygorskite cell , 2007, Clay Minerals.

[25]  Azm S. Al-Homoud,et al.  Effects of methods of drying on the engineering behavior of clays , 1994 .

[26]  G. Artioli,et al.  Palygorskite From Bolca, Italy - A Characterization By High-resolution Synchrotron-radiation Powder Diffraction and Computer Modeling , 1994 .

[27]  F. A. Mumpton New Data on Sepiolite and Attapulgite1 , 1956 .

[28]  M. Krekeler,et al.  Defects in microstructure in palygorskite–sepiolite minerals: A transmission electron microscopy (TEM) study , 2008 .

[29]  S. Kadir,et al.  The Geology and Origin of Sepiolite, Palygorskite and Saponite in Neogene Lacustrine Sediments of the Serinhisar-Acipayam Basin, Denizli, SW Turkey , 2003 .

[30]  E. Galán,et al.  Sepiolite and palygorskite , 1988 .

[31]  M. Suárez,et al.  Crystallochemical characterization of the palygorskite and sepiolite from the Allou Kagne deposit, Senegal , 2007 .

[32]  A. V. Pushkarev,et al.  Tritium redistribution between water and clay minerals , 2008 .

[33]  F. Jamoussi,et al.  Palygorskite genesis through silicate transformation in Tunisian continental Eocene deposits , 2003, Clay Minerals.

[34]  V. Gionis,et al.  Combined near-infrared and X-ray diffraction investigation of the octahedral sheet composition of palygorskite , 2007 .

[35]  S. Kadir,et al.  ORIGIN OF SEPIOLITE AND LOUGHLINITE IN A NEOGENE VOLCANO-SEDIMENTARY LACUSTRINE ENVIRONMENT, MİHALlÇÇlK–ESKİŞEHİR, TURKEY , 2002 .

[36]  M. Suárez,et al.  Fault-Hosted Palygorskite from the Serrata De Níjar Deformation Zone (SE Spain) , 2006 .

[37]  V. Gionis,et al.  On the structure of palygorskite by mid- and near-infrared spectroscopy , 2006 .

[38]  É. Verrecchia,et al.  Occurrence and Genesis of Palygorskite and Associated Clay Minerals in a Pleistocene Calcrete Complex, Sde Boqer, Negev Desert, Israel , 1996, Clay Minerals.

[39]  Z. Xiaoping,et al.  SAED and HRTEM Investigation of Palygorskite , 2008 .

[40]  C. E. Weaver Origin and Geologic Implications of the Palygorskite Deposits of S.E. United States , 1984 .

[41]  N. Güven,et al.  The Coordination of Aluminum Ions in the Palygorskite Structure , 1992 .

[42]  G. Chiari,et al.  Crystal structure refinement of Maya Blue pigment prepared with deuterated indigo, using neutron powder diffraction , 2006 .

[43]  H. Yalçın,et al.  Ultramafic-Rock-Hosted Vein Sepiolite Occurrences in the Ankara Ophiolitic Mélange, Central Anatolia, Turkey , 2004 .

[44]  K. Brauner,et al.  Struktur und Entstehung des Sepioliths , 1956 .

[45]  A. B. Luz,et al.  Influence of morphology and surface charge on the suitability of palygorskite as drilling fluid , 2009 .

[46]  R. Otsuka,et al.  Sepiolite and Palygorskite in Japan , 1984 .

[47]  Noureddine Zaaboub,et al.  Origin of fibrous clays in Tunisian Paleogene continental deposits , 2005 .

[48]  E. Ruiz-Hitzky,et al.  Structural Fluorine in Sepiolite , 1990 .

[49]  V. Gionis,et al.  Letter: Octahedral cation distribution in palygorskite , 2009 .

[50]  K. Stahr,et al.  Characteristics and origin of sepiolite (Meerschaum) from Central Somalia , 1998, Clay Minerals.

[51]  G. Artioli,et al.  The Crystal Structures of Orthorhombic and Monoclinic Palygorskite , 1994 .