Optimizing a direct string magnetic gradiometer for geophysical exploration.

Magnetic gradiometers are tools for geophysical exploration. The magnetic gradient is normally calculated by subtracting the outputs of two total field magnetometers which are separated by a baseline. Here we present a unique device that directly measures magnetic gradients using only a single string as its sensing element. The main advantage of a direct string magnetic gradiometer is that only gradients can induce second harmonic string vibrations. A high common mode rejection ratio is thus naturally achieved without any balancing technique. Performance depends on the ability to dissipate heat while minimizing air damping. By combining high current, an elevated temperature and low pressure, we can easily achieve sensitivity of 0.18 nT/m/square root of Hz. Further increases in sensitivity can be attained by optimizing the sensing element. In this paper we present an in-depth study of the most critical parameters of the magnetic gradiometer. We describe the design for the next generation of sensor, which will reach the required sensitivity of 0.01 nT/m/square root of Hz using only 1 W of power. By combining a few single-axis magnetic gradiometer modules, it will be possible to deploy a full tensor magnetic gradiometer with more than sufficient sensitivity for airborne geophysical applications.

[1]  H. M. Irvine ENERGY RELATIONS FOR A SUSPENDED CABLE , 1980 .

[2]  B. N. Singh,et al.  Effect of neutron irradiation and post-irradiation annealing on microstructure and mechanical properties of OFHC-copper , 2001 .

[3]  H. Zhou,et al.  Dynamic internal friction of mono-crystalline aluminum during high temperature creep , 1995 .

[4]  W. Duffy Acoustic quality factor of aluminium and selected aluminium alloys from 50 mK to 300 K , 2002 .

[5]  D. Blair,et al.  Direct string magnetic gradiometer for space applications , 2008, 0801.1175.

[6]  Graham Williams,et al.  Anelastic and Dielectric Effects in Polymeric Solids , 1991 .

[7]  G. Szenes,et al.  Grain‐boundary relaxation in AlMgSi alloys , 1974 .

[8]  Fritz Primdahl,et al.  Triaxial fluxgate gradiometer of high stability and linearity , 2005 .

[9]  Marie Levine,et al.  Material damping experiments at cryogenic temperatures , 2003, SPIE Optics + Photonics.

[10]  Alexey Veryaskin Theory of operation of direct string magnetic gradiometer with proportional and integral feedback , 2007 .

[11]  K. Maglić,et al.  Specific heat and electrical resistivity of niobium measured by subsecond calorimetric technique , 1994 .

[12]  W. Preece,et al.  II. On the heating effects of electric currents , 1883, Proceedings of the Royal Society of London.

[13]  H. von Ubisch,et al.  On the conduction of heat in rarefied gases and its manometric application. I , 1951 .

[14]  P. D. Desai,et al.  Electrical Resistivity of Aluminum and Manganese , 1984 .

[15]  R. Pohl,et al.  Low-temperature acoustic and thermal properties of plastically deformed, high-purity polycrystalline aluminum , 2001 .

[16]  P. Saulson,et al.  Thermal noise in mechanical experiments. , 1990, Physical review. D, Particles and fields.

[17]  A. Wilson,et al.  The thermal expansion of aluminium from 0? to 650? C , 1941 .

[18]  Fabio Marchesoni,et al.  Low-frequency internal friction in clamped-free thin wires , 1999 .

[19]  Hiroshi Zui,et al.  Practical Formulas for Estimation of Cable Tension by Vibration Method , 1996 .

[20]  C. Foley,et al.  Helicopter trial of magnetic tensor gradiometer , 2007 .

[21]  V. Braginsky,et al.  Systems with Small Dissipation , 1986 .

[22]  M. S. Triantafyllou,et al.  Natural Frequencies and Modes of Inclined Cables , 1986 .

[23]  T. Kê Experimental Evidence of the Viscous Behavior of Grain Boundaries in Metals , 1947 .

[24]  Laurent Grinfogel Dynamics of elastic taut inclined cables , 1984 .

[25]  D Laux,et al.  Ultrasonic measurement of anisotropy and temperature dependence of elastic parameters by a dry coupling method applied to a 6061-T6 alloy. , 2007, Ultrasonics.

[26]  R. J. Prance,et al.  Compact broadband gradiometric induction magnetometer system , 1999 .

[27]  Xiao Liu,et al.  LOW-TEMPERATURE INTERNAL FRICTION IN METAL FILMS AND IN PLASTICALLY DEFORMED BULK ALUMINUM , 1999 .

[28]  K. Tsubono,et al.  Quality factor of vibration of aluminum alloy disks , 1978 .

[29]  N. K. Myshkin,et al.  Electrical Contacts: Fundamentals, Applications and Technology , 2006 .

[30]  A. V. Veryaskin Magnetic gradiometry: a new method for magnetic gradient measurements , 2001 .

[31]  A. Chwala,et al.  Magnetic full-tensor SQUID gradiometer system for geophysical applications , 2006 .

[32]  H. Miao,et al.  Three-mode optoacoustic parametric amplifier: a tool for macroscopic quantum experiments. , 2009, Physical review letters.

[33]  D. Blair,et al.  The Q-factor of flexure membranes , 2001 .

[34]  A. Rivière,et al.  Damping of a high-purity aluminum single crystal at high temperatures , 2006 .

[35]  Richard F. Greene,et al.  On a Theorem of Irreversible Thermodynamics , 1952 .

[36]  Thermal noise in low loss flexures , 2002 .

[37]  D. Blair,et al.  Low magnetic susceptibility materials and applications in magnetic gradiometry , 2009 .

[38]  Peter R. Saulson,et al.  Brownian motion of a mass suspended by an anelastic wire , 1994 .

[39]  David A. Clark,et al.  The magnetic gradient tensor: Its properties and uses in source characterization , 2006 .

[40]  R. Christian The theory of oscillating-vane vacuum gauges , 1966 .

[41]  Molecular aggregation of solid aromatic polymers. IV. Dynamic mechanical properties of aromatic polyamideimide film , 1986 .

[42]  David Blair,et al.  String Magnetic Gradiometer System: Recent airborne trials , 2004 .