Chemotactic behavior of catalytic motors in microfluidic channels.

Chemotaxis is the ability of living systems to sense chemical gradients in their surroundings and react accordingly. Most prominent chemotactic behavior is exhibited by simple microorganisms that are able to migrate towards gradients of concentrations of the chemoattractant, via activation of the complex intracellular sensing cascades making use of specific chemoreceptors. Classical demonstrations of this phenomenon were described by Engelmann, who observed the accumulation of Bacterium termo, a rod-shaped bacterium, in oxygen-rich surroundings of cells undergoing photosynthesis. Yet, other bacteria can show completely different behavior, like Spirillumtenue, which is repelled by high oxygen pressure, presenting an antichemotactic behavior.

[1]  Samuel Sanchez,et al.  Catalytic Janus motors on microfluidic chip: deterministic motion for targeted cargo delivery. , 2012, ACS nano.

[2]  G. Whitesides,et al.  Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device , 2002, Nature Biotechnology.

[3]  Wei Wang,et al.  Autonomous motion of metallic microrods propelled by ultrasound. , 2012, ACS nano.

[4]  Ramin Golestanian,et al.  Self-motile colloidal particles: from directed propulsion to random walk. , 2007, Physical review letters.

[5]  Erik Luijten,et al.  Janus Particle Synthesis and Assembly , 2010, Advanced materials.

[6]  Lixin Dong,et al.  Artificial bacterial flagella: Fabrication and magnetic control , 2009 .

[7]  Ioannis K. Kaliakatsos,et al.  Microrobots for minimally invasive medicine. , 2010, Annual review of biomedical engineering.

[8]  Samudra Sengupta,et al.  Die phantastische Reise: Nanoroboter mit Eigenantrieb , 2012 .

[9]  Ramin Golestanian,et al.  Size dependence of the propulsion velocity for catalytic Janus-sphere swimmers. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  Krzysztof K. Krawczyk,et al.  Magnetic Helical Micromachines: Fabrication, Controlled Swimming, and Cargo Transport , 2012, Advanced materials.

[11]  Li Zhang,et al.  Bio-inspired magnetic swimming microrobots for biomedical applications. , 2013, Nanoscale.

[12]  Tristan Tabouillot,et al.  Enzyme molecules as nanomotors. , 2013, Journal of the American Chemical Society.

[13]  O. Schmidt,et al.  Superfast motion of catalytic microjet engines at physiological temperature. , 2011, Journal of the American Chemical Society.

[14]  P. Fischer,et al.  Controlled propulsion of artificial magnetic nanostructured propellers. , 2009, Nano letters.

[15]  Th. W. Engelmann,et al.  Neue Methode zur Untersuchung der Sauerstoffausscheidung pflanzlicher und thierischer Organismen , 1881, Archiv für die gesamte Physiologie des Menschen und der Tiere.

[16]  J. Adler,et al.  Chemoreceptors in bacteria. , 1969, Science.

[17]  Samuel Sanchez,et al.  Light-controlled propulsion of catalytic microengines. , 2011, Angewandte Chemie.

[18]  Joseph Wang,et al.  Can man-made nanomachines compete with nature biomotors? , 2009, ACS nano.

[19]  O. Schmidt,et al.  Catalytic Microstrider at the Air–Liquid Interface , 2010, Advanced materials.

[20]  Jonathan Posner,et al.  Electrochemically-triggered motion of catalytic nanomotors. , 2009, Chemical communications.

[21]  Kalayil Manian Manesh,et al.  Thermal modulation of nanomotor movement. , 2009, Small.

[22]  Samuel Sanchez,et al.  Controlled manipulation of multiple cells using catalytic microbots. , 2011, Chemical communications.

[23]  Denys Makarov,et al.  Fuel-free locomotion of Janus motors: magnetically induced thermophoresis. , 2013, ACS nano.

[24]  Ayusman Sen,et al.  Fantastic voyage: designing self-powered nanorobots. , 2012, Angewandte Chemie.

[25]  Juan J de Pablo,et al.  Molecular propulsion: chemical sensing and chemotaxis of DNA driven by RNA polymerase. , 2009, Journal of the American Chemical Society.

[26]  D. Velegol,et al.  Chemotaxis of nonbiological colloidal rods. , 2007, Physical review letters.

[27]  P. Devreotes,et al.  Chemotaxis: signalling the way forward , 2004, Nature Reviews Molecular Cell Biology.

[28]  Wei Gao,et al.  Nano/Microscale motors: biomedical opportunities and challenges. , 2012, ACS nano.

[29]  Jan K. G. Dhont,et al.  An introduction to dynamics of colloids , 1996 .

[30]  H. Mao,et al.  A sensitive, versatile microfluidic assay for bacterial chemotaxis , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Oliver G. Schmidt,et al.  Rolled-up nanotech on polymers: from basic perception to self-propelled catalytic microengines. , 2011, Chemical Society reviews.

[32]  Thomas E Mallouk,et al.  Schooling behavior of light-powered autonomous micromotors in water. , 2009, Angewandte Chemie.

[33]  Denys Makarov,et al.  Control over Janus micromotors by the strength of a magnetic field. , 2013, Nanoscale.

[34]  Th. W. Engelmann,et al.  Zur Biologie der Schizomyceten , 1881, Archiv für die gesamte Physiologie des Menschen und der Tiere.

[35]  Roman Stocker,et al.  Microfluidics for bacterial chemotaxis. , 2010, Integrative biology : quantitative biosciences from nano to macro.

[36]  Samudra Sengupta,et al.  A polymerization-powered motor. , 2011, Angewandte Chemie.

[37]  Walter F Paxton,et al.  Catalytic nanomotors: remote-controlled autonomous movement of striped metallic nanorods. , 2005, Angewandte Chemie.

[38]  Martin Pumera,et al.  Magnetic Control of Tubular Catalytic Microbots for the Transport, Assembly, and Delivery of Micro‐objects , 2010 .

[39]  Walter F Paxton,et al.  Motility of catalytic nanoparticles through self-generated forces. , 2005, Chemistry.

[40]  Martin Pumera,et al.  Nanorobots: the ultimate wireless self-propelled sensing and actuating devices. , 2009, Chemistry, an Asian journal.

[41]  Martin Pumera,et al.  Nanomaterials meet microfluidics. , 2011, Chemical communications.