Fluid preconditioning for Newton-Krylov-based, fully implicit, electrostatic particle-in-cell simulations

A recent proof-of-principle study proposes an energy- and charge-conserving, nonlinearly implicit electrostatic particle-in-cell (PIC) algorithm in one dimension [9]. The algorithm in the reference employs an unpreconditioned Jacobian-free Newton-Krylov method, which ensures nonlinear convergence at every timestep (resolving the dynamical timescale of interest). Kinetic enslavement, which is one key component of the algorithm, not only enables fully implicit PIC as a practical approach, but also allows preconditioning the kinetic solver with a fluid approximation. This study proposes such a preconditioner, in which the linearized moment equations are closed with moments computed from particles. Effective acceleration of the linear GMRES solve is demonstrated, on both uniform and non-uniform meshes. The algorithm performance is largely insensitive to the electron-ion mass ratio. Numerical experiments are performed on a 1D multi-scale ion acoustic wave test problem.

[1]  A. B. Langdon,et al.  Performance and optimization of direct implicit particle simulation , 1989 .

[2]  Ole Christensen,et al.  Functions, Spaces, and Expansions , 2010 .

[3]  R. J. Mason,et al.  Implicit moment particle simulation of plasmas , 1981 .

[4]  D. C. Barnes,et al.  A charge- and energy-conserving implicit, electrostatic particle-in-cell algorithm on mapped computational meshes , 2013, J. Comput. Phys..

[5]  Luis Chacón,et al.  Development of a Consistent and Stable Fully Implicit Moment Method for Vlasov-Ampère Particle in Cell (PIC) System , 2013, SIAM J. Sci. Comput..

[6]  J. Jackson,et al.  Longitudinal plasma oscillations , 1960 .

[7]  Luis Chacón,et al.  An energy- and charge-conserving, nonlinearly implicit, electromagnetic 1D-3V Vlasov-Darwin particle-in-cell algorithm , 2013, Comput. Phys. Commun..

[8]  R. Fernsler,et al.  Quasineutral plasma models. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  C. Birdsall,et al.  Plasma Physics via Computer Simulation , 2018 .

[10]  Jeremiah Brackbill,et al.  An implicit method for electromagnetic plasma simulation in two dimensions , 1982 .

[11]  N. A. Krall What do we really know about collisionless shocks , 1997 .

[12]  Luis Chacón,et al.  An energy- and charge-conserving, implicit, electrostatic particle-in-cell algorithm , 2011, J. Comput. Phys..

[13]  Francis F. Chen,et al.  Introduction to Plasma Physics and Controlled Fusion , 2015 .

[14]  Ole Christensen,et al.  Functions, spaces, and expansions: mathematical tools in physics and engineering / Ole Christensen , 2010 .

[15]  Carl Tim Kelley,et al.  Iterative methods for optimization , 1999, Frontiers in applied mathematics.

[16]  Stefano Markidis,et al.  The energy conserving particle-in-cell method , 2011, J. Comput. Phys..

[17]  R. Dembo,et al.  INEXACT NEWTON METHODS , 1982 .

[18]  Bruce I. Cohen,et al.  Orbit-averaged implicit particle codes , 1982 .

[19]  Scott E. Parker,et al.  Bounded multi-scale plasma simulation: application to sheath problems , 1993 .

[20]  Luis Chacón,et al.  An analytical particle mover for the charge- and energy-conserving, nonlinearly implicit, electrostatic particle-in-cell algorithm , 2013, J. Comput. Phys..

[21]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[22]  A. Bruce Langdon Analysis of the time integration in plasma simulation , 1979 .

[23]  J. H Williamson Initial particle distributions for simulated plasma , 1971 .

[24]  Luis Chacón,et al.  An efficient mixed-precision, hybrid CPU-GPU implementation of a nonlinearly implicit one-dimensional particle-in-cell algorithm , 2011, J. Comput. Phys..

[25]  Scott E. Parker,et al.  Multi-scale particle-in-cell plasma simulation , 1991 .

[26]  D. Keyes,et al.  Jacobian-free Newton-Krylov methods: a survey of approaches and applications , 2004 .

[27]  Fabrice Deluzet,et al.  Asymptotic-Preserving Particle-In-Cell method for the Vlasov-Poisson system near quasineutrality , 2010, J. Comput. Phys..