WASP-50 b: A hot Jupiter transiting a moderately active solar-type star
暂无分享,去创建一个
R. G. West | D. Pollacco | P. J. Wheatley | B. Enoch | C. Hellier | D. Queloz | F. Faedi | S. C. C. Barros | B. Smalley | J. Bento | F. Pepe | D. Segransan | D. R. Anderson | J. Southworth | J. Montalban | M. Gillon | A. P. Doyle | M. Lendl | P. F. L. Maxted | A. H. M. J. Triaud | A. Collier-Cameron | E. Jehin | P. Magain | A. M. S. Smith | S. Udry | P. Magain | S. Udry | D. Ségransan | E. Jehin | F. Pepe | M. Gillon | D. Queloz | J. Bento | D. Pollacco | R. West | Alexis M. S. Smith | P. Wheatley | A. Triaud | D. Anderson | S. Barros | F. Faedi | P. Maxted | B. Smalley | J. Southworth | A. Smith | J. Montalbán | C. Hellier | A. Collier-Cameron | B. Enoch | M. Lendl | A. Doyle | F. Pepe | D. Anderson | D. Ségransan | Amaury H. M. J. Triaud | A. Triaud
[1] L. Hebb,et al. Improved parameters for the transiting hot Jupiters WASP-4b and WASP-5b , 2008, 0812.1998.
[2] R. G. West,et al. Efficient identification of exoplanetary transit candidates from SuperWASP light curves , 2007, 0707.0417.
[3] Shih-Hsin Chang,et al. TIDAL AND MAGNETIC INTERACTIONS BETWEEN A HOT JUPITER AND ITS HOST STAR IN THE MAGNETOSPHERIC CAVITY OF A PROTOPLANETARY DISK , 2009, 0911.4532.
[4] S. Baliunas,et al. No Planet for Hd 166435 , 2022 .
[5] A. Claret,et al. A new non-linear limb-darkening law for LTE stellar atmosphere models III - Sloan filters: Calculations for –5.0 ≤ log [M/H] ≤ +1, 2000 K ≤ T$\mathsf{_{eff}}$ ≤ 50 000 K at several surface gravities , 2004 .
[6] William H. Press,et al. Book-Review - Numerical Recipes in Pascal - the Art of Scientific Computing , 1989 .
[7] A. Cox,et al. Allen's astrophysical quantities , 2000 .
[8] Sara Seager,et al. Exoplanet Atmospheres: Physical Processes , 2010 .
[9] Sofia Randich,et al. Time scales of Li evolution: A Homogeneous analysis of open clusters from ZAMS to late-MS , 2005 .
[10] J. Wright,et al. Radial velocity jitter in stars from the california and carnegie planet search at keck observatory , 2005 .
[11] Nikole K. Lewis,et al. WARM SPITZER PHOTOMETRY OF THE TRANSITING EXOPLANETS CoRoT-1 AND CoRoT-2 AT SECONDARY ECLIPSE , 2010, 1011.1019.
[12] P. Stetson. DAOPHOT: A COMPUTER PROGRAM FOR CROWDED-FIELD STELLAR PHOTOMETRY , 1987 .
[13] R. Scuflaire,et al. CLÉS, Code Liégeois d’Évolution Stellaire , 2007, 0712.3471.
[14] C. Moutou,et al. Transiting exoplanets from the CoRoT space mission XIII. CoRoT-13b: a dense hot Jupiter in transit around a star with solar metallicity and super-solar lithium content , 2010, 1007.5481.
[15] S. Barnes. Accepted for publication in The Astrophysical Journal Ages for illustrative field stars using gyrochronology: viability, limitations and errors , 2022 .
[16] A. Collier Cameron,et al. A fast hybrid algorithm for exoplanetary transit searches , 2006, astro-ph/0609418.
[17] Eike W. Guenther,et al. HD15082b, a short-period planet orbiting an A-star , 2011 .
[18] C. Moutou,et al. Transiting exoplanets from the CoRoT space mission. XII. CoRoT-12b: a short-period low-density planet transiting a solar analog star , 2010, 1007.2497.
[19] Frederic Pont,et al. Empirical evidence for tidal evolution in transiting planetary systems , 2008, 0812.1463.
[20] V. S. Dhillon,et al. Estimating the masses of extra-solar planets , 2010, 1006.2069.
[21] A. Collier Cameron,et al. The thermal emission of the young and massive planet CoRoT-2b at 4.5 and 8 μm , 2009, 0911.5087.
[22] John Asher Johnson,et al. HOT STARS WITH HOT JUPITERS HAVE HIGH OBLIQUITIES , 2010, 1006.4161.
[23] Drake Deming,et al. SYSTEM PARAMETERS, TRANSIT TIMES, AND SECONDARY ECLIPSE CONSTRAINTS OF THE EXOPLANET SYSTEMS HAT-P-4, TrES-2, TrES-3, and WASP-3 FROM THE NASA EPOXI MISSION OF OPPORTUNITY , 2010, 1011.2229.
[24] A. F. Lanza,et al. Hot Jupiters and the evolution of stellar angular momentum , 2009, Proceedings of the International Astronomical Union.
[25] A. Gimenez,et al. Accurate masses and radii of normal stars: modern results and applications , 2009, 0908.2624.
[26] R. G. West,et al. WASP-12b: THE HOTTEST TRANSITING EXTRASOLAR PLANET YET DISCOVERED , 2008, 0812.3240.
[27] Observatoire de Geneve,et al. VLT transit and occultation photometry for the bloated planet CoRoT-1b , 2009, 0905.4571.
[28] D. Rubin,et al. Inference from Iterative Simulation Using Multiple Sequences , 1992 .
[29] A. Collier Cameron,et al. An improved method for estimating the masses of stars with transiting planets , 2010, 1004.1991.
[30] D. F. Gray,et al. The Observation and Analysis of Stellar Photospheres , 2021 .
[31] I. Hubeny,et al. Theoretical Spectra and Light Curves of Close-in Extrasolar Giant Planets and Comparison with Data , 2007, 0709.4080.
[32] E. Agol,et al. Analytic Light Curves for Planetary Transit Searches , 2002, astro-ph/0210099.
[33] Mark S. Marley,et al. Planetary Radii across Five Orders of Magnitude in Mass and Stellar Insolation: Application to Transits , 2006 .
[34] Joshua N. Winn,et al. THE TRANSIT LIGHT-CURVE PROJECT. XIV. CONFIRMATION OF ANOMALOUS RADII FOR THE EXOPLANETS TrES-4b, HAT-P-3b, AND WASP-12b , 2011, 1103.3078.
[35] Howard Isaacson,et al. A CORRELATION BETWEEN STELLAR ACTIVITY AND HOT JUPITER EMISSION SPECTRA , 2010, 1004.2702.
[36] John Southworth,et al. Homogeneous studies of transiting extrasolar planets – IV. Thirty systems with space-based light curves , 2011, 1107.1235.
[37] Michel Mayor,et al. ELODIE: A spectrograph for accurate radial velocity measurements , 1996 .
[38] David Charbonneau,et al. The transit light curve project. I. Four consecutive transits of the exoplanet XO-1b , 2006 .
[39] Joel D. Hartman,et al. A CORRELATION BETWEEN STELLAR ACTIVITY AND THE SURFACE GRAVITY OF HOT JUPITERS , 2010, 1004.4252.
[40] S. Seager,et al. Exoplanet Atmospheres , 2010 .