Excitation controller design of synchronous machine with output feedback using high and reduced-order models

ContentsA practical 8th-order single-input multiple-output (SIMO) time-invariant linear model of a synchronous machine with first order conventional exciter, supplying power to the power system through a transformer and a transmission line has been developed. The criterion for the effective contribution of each system state to the total energy response at the output is used to obtain an adequate reduced 4th-order model in which the most important states and eigenvalues of the original model are retained. An efficient algebraic pole—placement method, using output feedback has been used to design the 8th and 4th-order models, physically realisable linear excitation controllers (with easily measurable state variables) for the purpose of substantially enhancing the dynamic stability characteristics and voltage control of a synchronous machine. The controller designed for the 4th-order model has also been tested on the 8th order model to demonstrate the validity of implementing reduced order formulations without degrading the performance of the control. A procedure for implementing the control strategies is presented in this study, and attention is drawn to the wider implications of implementing practical designs on large turbogenerators currently in use.ÜbersichtAus dem Modell einer Synchronmaschine in Form eines licaren zeitinvarianten Systems 8. Ordnung wird ein reduziertes Modell 4. Ordnung abgeleitet, das die wichtigsten Eigenwerte des Systems beibehält. Mit Hilfe eines algebraischen Verfahrens zur Bestimmung der Pole können lineare Regler der Erregung entworfen werden, die ein verbessertes Verhalten der Maschine bezüglich Stabilität und Spannungsregelung herbeiführen. Der für das Modell 4. Ordnung entworfene Regler zeigt bei Betrachtung am System 8. Ordnung keine Verschlechterung des Verhaltens. Auf die Bedeutung des Verfahrens für praktische Ausführungen bei großen Turbogeneratoren wird hingewiesen.

[1]  Edward J. Davison,et al.  The Optimal Output Feedback Control of a Synchronous Machine , 1971 .

[2]  J. A. Soper,et al.  Divided-winding-rotor synchronous generator. A comparison of simulated 30 MW conventional- and divided-winding-rotor turbogenerators , 1969 .

[3]  A. K. Boglou,et al.  Frequency-domain order reduction methods applied to a hydro power system , 1988 .

[4]  V.H. Quintana,et al.  Optimal output feedback control of power systems with high-speed excitation systems , 1976, IEEE Transactions on Power Apparatus and Systems.

[5]  B. Adkins,et al.  Transient stability of power systems containing both synchronous and induction machines , 1971 .

[6]  J. Hickin,et al.  Model reduction for linear multivariable systems , 1980 .

[7]  J. R. Smith,et al.  Numerical determination of reduced order linear synchronous machine models , 1977 .

[8]  P. N. Paraskevopoulos,et al.  Application of eigenvalue assignment techniques for damping power frequency oscillations , 1985 .

[9]  D. P. Papadopoulos Excitation control of turbogenerators with output feedback , 1986 .

[10]  Z. Elrazaz,et al.  On the selection of the dominant poles of a system to be retained in a low-order model , 1979 .

[11]  W. Enright,et al.  On selecting a low-order model using the dominant mode concept , 1980 .

[12]  W. Wonham On pole assignment in multi-input controllable linear systems , 1967 .

[13]  N. Sinha,et al.  On the selection of states to be retained in a reduced-order model , 1984 .