Energy requirements in communication

The accepted view maintains that at least kT loge2 must be dissipated per transmitted bit. This is the result of prevalent assumptions that communication is done by waves, in linear systems, and that the energy in the message must be dissipated. It is shown, through counterexamples, that there is no minimal dissipation per transmitted bit. The simplest counterexample is physical transport of bistable systems. As in computation and measurement, unavoidable minimal dissipation occurs only when information is discarded.

[1]  Rolf Landauer,et al.  Computation and physics: Wheeler's meaning circuit? , 1986 .

[2]  John Maddox Quantum information storage , 1987, Nature.

[3]  C. Helstrom,et al.  Quantum-mechanical communication theory , 1970 .

[4]  R. Landauer Uncertainty principle and minimal energy dissipation in the computer , 1982 .

[5]  R. Baierlein,et al.  Entropy in relation to incomplete knowledge , 1985 .

[6]  Obermayer,et al.  Multistable quantum systems: Information processing at microscopic levels. , 1987, Physical review letters.

[7]  M. Scully,et al.  Frontiers of nonequilibrium statistical physics , 1986 .

[8]  R. Landauer Computation: A Fundamental Physical View , 1987 .

[9]  John B. Pendry,et al.  Quantum limits to the flow of information and entropy , 1983 .

[10]  K. K. Likharev,et al.  Classical and quantum limitations on energy consumption in computation , 1982 .

[11]  E. Lubkin,et al.  Keeping the entropy of measurement: Szilard revisited , 1987 .

[12]  Charles H. Bennett,et al.  The thermodynamics of computation—a review , 1982 .

[13]  Andrew F. Rex,et al.  The operation of Maxwell’s demon in a low entropy system , 1987 .

[14]  J. Maxwell,et al.  Theory of Heat , 1892 .

[15]  Charles H. Bennett,et al.  Logical reversibility of computation , 1973 .

[16]  J. Barrow,et al.  The Anthropic Cosmological Principle , 1987 .

[17]  J. Bekenstein Entropy content and information flow in systems with limited energy , 1984 .

[18]  R. Landauer,et al.  Drift and Diffusion in Reversible Computation , 1985 .

[19]  Francis T. S. Yu,et al.  Optics and information theory , 1976 .

[20]  L. Brillouin,et al.  Science and information theory , 1956 .

[21]  Charles H. Bennett Demons, Engines and the Second Law , 1987 .

[22]  Rolf Landauer,et al.  Fundamental Limitations in the Computational Process , 1976 .