On the stable analytic continuation with a condition of uniform boundedness

It is shown that, if h(x) is any continuous function defined on some interval [−a,b]⊆(−1,1) of the real axis, then, in general, its best L2 approximant, in the class of functions holomorphic and bounded by unity in the unit disk of the complex plane, is a finite Blaschke product. An upper bound is placed on the number of factors of the latter and a method for its construction is given. The paper contains a discussion of the use of these results in performing a stable analytic continuation of a set of data points under a condition of uniform boundedness, as well as some numerical examples.

[1]  H. S. Shapiro,et al.  On certain extremum problems for analytic functions , 1953 .

[2]  M. Heins On the Lindelof principle , 1955 .

[3]  P. Lax Reciprocal extremal problems in function theory , 1955 .

[4]  T. A. Brown,et al.  Theory of Equations. , 1950, The Mathematical Gazette.

[5]  On the numerical analytic continuation of the proton electromagnetic form factors , 1965 .

[6]  W. Rudin Real and complex analysis , 1968 .

[7]  M. M. Lavrentiev,et al.  Some Improperly Posed Problems of Mathematical Physics , 1967 .

[8]  R. A. Silverman,et al.  Theory of Functions of a Complex Variable , 1968 .

[9]  R. Cutkosky,et al.  Determination of Coupling Constants from Poles in Scattering Cross Sections , 1968 .

[10]  D. Luenberger Optimization by Vector Space Methods , 1968 .

[11]  S. Ciulli A stable and convergent extrapolation procedure for the scattering amplitude , 1969 .

[12]  R. Cutkosky Theory of representation of scattering data by analytic functions , 1969 .

[13]  I. Caprini,et al.  BIAS-FREE METHOD FOR THE DETECTION OF BOUND, ANTIBOUND, AND RESONANT STATES FROM ERROR-AFFECTED EXPERIMENTAL DATA. , 1972 .

[14]  I. Caprini On the consistency of πN forward-scattering data with analyticity and crossingforward-scattering data with analyticity and crossing , 1972 .

[15]  G. Nenciu,et al.  A rigorous lower bound for the maximum of the amplitude from error-affected data , 1972 .

[16]  G. Nenciu,et al.  Optimal lower bounds on the hadronic contribution to the muon anomalous magnetic moment , 1972 .

[17]  E. Pietarinen Approximation of scattering amplitudes using analyticity and experimental data , 1973 .

[18]  R. Cutkosky Construction of reproducing kernels for analytic Hilbert spaces , 1973 .

[19]  I. Raszillier,et al.  Optimal bounds for the pion form factor from analyticity and experimental data , 1973 .

[20]  G. Nenciu The Schur-Pick-Nevanlinna interpolation theory - an alternative to the N/D equations , 1973 .

[21]  H. Schneider,et al.  Optimal information for the pion form factor from analyticity and experimental data , 1973 .

[22]  On the analytic extrapolation of scattering amplitudes in L2 norm , 1973 .

[23]  Jerrold E. Marsden,et al.  Basic Complex Analysis , 1973 .

[24]  S. Okubo Theory of self‐reproducing kernel and dispersion inequalities , 1974 .

[25]  S. Ciulli,et al.  Analytic Extrapolation Techniques and Stability Problems in Dispersion Relation Theory , 1975 .

[26]  H. Kiehlmann,et al.  An analysis of the new pion form factor data , 1975 .

[27]  I. Stefanescu,et al.  Pionic contribution to the muon magnetic moment , 1976 .

[28]  I. Stefanescu On the stable analytic continuation with rational functions , 1980 .

[29]  Analytic continuation from data points with unequal errors , 1982 .

[30]  P. Dita Optimal analytic extrapolations revisited , 1984 .