The carrier effects on the change of refractive index for n‐type GaAs at λ=1.06,1.3, and 1.55 μm

A numerical Kramers–Kronig analysis is used to calculate the refractive‐index change Δn caused by the injection/depletion of free carriers in various doped n‐type GaAs. The analysis makes use of a carrier‐related absorption spectrum, which is established by using quantum theory as well as empirical relations and is confirmed by the experimental absorption data in the literature. We obtain the Δn values for various doping concentrations ND and carrier concentrations N at three wavelengths; λ=1.06, 1.3, and 1.55 μm. The Δn value is positive for low‐N region, and increases gradually to its maximum which is around 10−4 for λ=1.06 μm. Thereafter, Δn decreases rapidly to 0 as N increases. The linear relation between Δn and N, as predicted by the Drude theory, only happens when N is beyond a certain value. In this region, the Δn value may attain to −10−2 at N=5×1018 cm−3 for λ=1.55 μm. Because of this significant Δn value and its linear relation with N, the free‐carrier induced index‐change effect may find the a...

[1]  M. Soma,et al.  Voltage measurement in GaAs Schottky barriers using optical phase modulation , 1988, IEEE Electron Device Letters.

[2]  Koji Ishida,et al.  InGaAsP/InP optical switches using carrier induced refractive index change , 1987 .

[3]  Highly efficient waveguide phase modulator for integrated optoelectronics , 1986 .

[4]  G. Mourou,et al.  Subpicosecond electrooptic sampling: Principles and applications , 1986 .

[5]  Brian H. Kolner,et al.  Electrooptic Sampling of GaAs Integrated Circuits , 1986, Topical Meeting on Ultrafast Phenomena.

[6]  S. Adachi GaAs, AlAs, and AlxGa1−xAs: Material parameters for use in research and device applications , 1985 .

[7]  F. O'Donnell,et al.  Single-mode optical waveguides and phase modulators in the InP material system , 1985 .

[8]  Maciej Bugajski,et al.  Concentration‐dependent absorption and photoluminescence of n‐type InP , 1985 .

[9]  Osamu Mikami,et al.  Waveguided optical switch in InGaAs/InP using free-carrier plasma dispersion , 1984 .

[10]  R. Olshansky,et al.  The carrier-induced index change in AlGaAs and 1.3 µm InGaAsP diode lasers , 1983 .

[11]  B. Beaumont,et al.  Low temperature photoluminescence of n‐type GaInAsP layers grown on InP by liquid phase epitaxy , 1983 .

[12]  B. Jensen,et al.  Quantum theory of the dispersion of the refractive index near the fundamental absorption edge in compound semiconductors , 1983 .

[13]  B. Jensen Quantum theory of the complex dielectric constant of free carriers in polar semiconductors , 1982 .

[14]  K. Wittmaack,et al.  Unexpectedly high energy photoluminescence of highly Si doped GaAs grown by MOVPE , 1982 .

[15]  B. Ridley Quantum Processes in Semiconductors , 1982 .

[16]  Charles Howard Henry,et al.  Spectral dependence of the change in refractive index due to carrier injection in GaAs lasers , 1981 .

[17]  J. Mendoza-Álvarez,et al.  Refractive index dependence on free carriers for GaAs , 1980 .

[18]  A. S. Jordan Determination of the total emittance of n‐type GaAs with application to Czochralski growth , 1980 .

[19]  J. Robert,et al.  The electron effective mass in heavily doped GaAs , 1979 .

[20]  H. Casey,et al.  Heterostructure lasers. Part A. Fundamental principles , 1978 .

[21]  W. Joyce,et al.  Analytic approximations for the Fermi energy of an ideal Fermi gas , 1977 .

[22]  J. W. Gibson,et al.  Infrared reflectance studies of bulk and epitaxial‐film n‐type GaAs , 1977 .

[23]  H. Casey,et al.  Concentration‐dependent absorption and spontaneous emission of heavily doped GaAs , 1976 .

[24]  J. Camassel,et al.  Temperature dependence of the band gap and comparison with the threshold frequency of pure GaAs lasers , 1975 .

[25]  H. C. Casey,et al.  Concentration dependence of the absorption coefficient for n− and p−type GaAs between 1.3 and 1.6 eV , 1975 .

[26]  R. Zitter,et al.  Far infrared optical properties of free carriers in GaAs , 1974 .

[27]  T. Moss,et al.  Semiconductor Opto-Electronics , 1973 .

[28]  K. Osamura,et al.  Free Carrier Absorption in n-GaAs , 1972 .

[29]  Sidney Perkowitz,et al.  Far infrared free-carrier absorption in n-type gallium arsenide , 1971 .

[30]  C. J. Johnson,et al.  Far Infrared Measurement of the Dielectric Properties of GaAs and CdTe at 300 K and 8 K. , 1969, Applied optics.

[31]  J. Pankove,et al.  Absorption Edge of Impure Gallium Arsenide , 1965 .

[32]  T. N. Morgan Broadening of Impurity Bands in Heavily Doped Semiconductors , 1965 .

[33]  E. Haga,et al.  Free-Carrier Infrared Absorption in III-V Semiconductors IV. Inter-Conduction Band Transitions , 1964 .

[34]  Frank Stern,et al.  Dispersion of the Index of Refraction Near the Absorption Edge of Semiconductors , 1964 .

[35]  D. E. Hill Infrared Transmission and Fluorescence of Doped Gallium Arsenide , 1964 .

[36]  S. Visvanathan Free Carrier Absorption Due to Polar Modes in the III-V Compound Semiconductors , 1960 .

[37]  J. M. Whelan,et al.  Infrared Absorption and Electron Effective Mass inn-Type Gallium Arsenide , 1959 .

[38]  W. Spitzer,et al.  Infrared Absorption in n-Type Germanium , 1956 .

[39]  E. Burstein Anomalous Optical Absorption Limit in InSb , 1954 .