Computational Luminance Constancy from Naturalistic Images

The human visual system supports stable percepts of object color even though the light that reflects from object surfaces varies significantly with the scene illumination. To understand the computations that support stable color perception, we study how estimating a target object’s luminous reflectance factor (LRF; a measure of the light reflected from the object under a standard illuminant) depends on variation in key properties of naturalistic scenes. Specifically, we study how variation in target object reflectance, illumination spectra, and the reflectance of back-ground objects in a scene impact estimation of a target object’s LRF. To do this, we applied supervised statistical learning methods to the simulated excitations of human cone photoreceptors, obtained from labeled naturalistic images. The naturalistic images were rendered with computer graphics. The illumination spectra of the light sources and the reflectance spectra of the surfaces in the scene were generated using statistical models of natural spectral variation. Optimally decoding target object LRF from the responses of a small learned set of task-specific linear receptive fields that operate on a contrast representation of the cone excitations yields estimates that are within 13% of the correct LRF. Our work provides a framework for evaluating how different sources of scene variability limit performance on luminance constancy.

[1]  E. Land,et al.  Lightness and retinex theory. , 1971, Journal of the Optical Society of America.

[2]  Brian C. McCann,et al.  Estimating 3D tilt from local image cues in natural scenes , 2016, Journal of vision.

[3]  Jeremy R. Manning,et al.  Unsupervised Learning of Cone Spectral Classes from Natural Images , 2014, PLoS Comput. Biol..

[4]  Dilip K Prasad,et al.  Illuminant estimation for color constancy: why spatial-domain methods work and the role of the color distribution. , 2014, Journal of the Optical Society of America. A, Optics, image science, and vision.

[5]  Vijay Balasubramanian,et al.  Natural Images from the Birthplace of the Human Eye , 2011, PloS one.

[6]  Noah Snavely,et al.  Intrinsic images in the wild , 2014, ACM Trans. Graph..

[7]  Andriana Olmos,et al.  A biologically inspired algorithm for the recovery of shading and reflectance images , 2004 .

[8]  Frederick A.A. Kingdom,et al.  Lightness, brightness and transparency: A quarter century of new ideas, captivating demonstrations and unrelenting controversy , 2011, Vision Research.

[9]  Graham D Finlayson,et al.  Colour and illumination in computer vision , 2018, Interface Focus.

[10]  E H Land,et al.  An alternative technique for the computation of the designator in the retinex theory of color vision. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Wei Ji Ma,et al.  Bayesian microsaccade detection , 2017, Journal of vision.

[12]  Ron Gershon,et al.  Measurement and Analysis of Object Reflectance Spectra , 1994 .

[13]  Matteo Toscani,et al.  Statistical correlates of perceived gloss in natural images , 2015, Vision Research.

[14]  Johannes Burge,et al.  The lawful imprecision of human surface tilt estimation in natural scenes , 2017, bioRxiv.

[15]  Donald D. Hoffman,et al.  Probabilistic Color Constancy , 2013 .

[16]  B. Wandell,et al.  Standard surface-reflectance model and illuminant estimation , 1989 .

[17]  Charless C. Fowlkes,et al.  Natural-Scene Statistics Predict How the Figure–Ground Cue of Convexity Affects Human Depth Perception , 2010, The Journal of Neuroscience.

[18]  B. Wandell,et al.  Matching color images: the effects of axial chromatic aberration , 1994 .

[19]  C. Gross,et al.  Visual topography of V2 in the macaque , 1981, The Journal of comparative neurology.

[20]  Johannes Burge,et al.  Linking normative models of natural tasks to descriptive models of neural response , 2017, bioRxiv.

[21]  Leland S. Stone,et al.  Effect of contrast on the active control of a moving line , 2010 .

[22]  David H Brainard,et al.  The color constancy of three-dimensional objects. , 2012, Journal of vision.

[23]  Lawrence H. Keeley,et al.  The functions of Paleolithic flint tools , 1977 .

[24]  Ryan V. Ringer,et al.  Impairing the useful field of view in natural scenes: Tunnel vision versus general interference. , 2016, Journal of vision.

[25]  M. Gazzaniga,et al.  The new cognitive neurosciences , 2000 .

[26]  G. Buchsbaum A spatial processor model for object colour perception , 1980 .

[27]  G. J. Burton,et al.  Color and spatial structure in natural scenes. , 1987, Applied optics.

[28]  Jonathan T. Barron,et al.  Convolutional Color Constancy , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[29]  J. Hernández-Andrés,et al.  Color and spectral analysis of daylight in southern Europe. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[30]  L. Maloney,et al.  Color constancy: a method for recovering surface spectral reflectance. , 1986, Journal of the Optical Society of America. A, Optics and image science.

[31]  D H Brainard,et al.  Analysis of the retinex theory of color vision. , 1986, Journal of the Optical Society of America. A, Optics and image science.

[32]  Steven K Shevell,et al.  Stereo disparity improves color constancy , 2002, Vision Research.

[33]  J. Beck THE EFFECT OF GLOSS ON PERCEIVED LIGHTNESS. , 1964, The American journal of psychology.

[34]  C. Gross,et al.  Visuotopic organization and extent of V3 and V4 of the macaque , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[35]  J. Mollon,et al.  Fruits, foliage and the evolution of primate colour vision. , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[36]  Karen R Dobkins,et al.  The face inversion effect in infants is driven by high, and not low, spatial frequencies. , 2014, Journal of vision.

[37]  Torbjørn Skauli,et al.  A collection of hyperspectral images for imaging systems research , 2013, Electronic Imaging.

[38]  Eero P. Simoncelli,et al.  Cardinal rules: Visual orientation perception reflects knowledge of environmental statistics , 2011, Nature Neuroscience.

[39]  Katja Doerschner,et al.  Illumination estimation in three-dimensional scenes with and without specular cues. , 2005, Journal of vision.

[40]  Dorothy Nickerson,et al.  Tristimulus specification of the Munsell book of color from spectrophotometric measurements , 1943 .

[41]  Jeffrey A. Saunders,et al.  Recruitment of new perceptual cues , 2005 .

[42]  Mark S. Drew,et al.  Color constancy computation in near-Mondrian scenes using a finite dimensional linear model , 1988, Proceedings CVPR '88: The Computer Society Conference on Computer Vision and Pattern Recognition.

[43]  Marc Ebner,et al.  Color Constancy , 2007, Computer Vision, A Reference Guide.

[44]  Karl R Gegenfurtner,et al.  Hyperspectral database of fruits and vegetables. , 2018, Journal of the Optical Society of America. A, Optics, image science, and vision.

[45]  J. Mollon "Tho' she kneel'd in that place where they grew..." The uses and origins of primate colour vision. , 1989, The Journal of experimental biology.

[46]  T Troscianko,et al.  Color and luminance information in natural scenes. , 1998, Journal of the Optical Society of America. A, Optics, image science, and vision.

[47]  David Williams,et al.  Color and the Cone Mosaic , 2006, Color Imaging Conference.

[48]  L. Maloney,et al.  The effect of perceived surface orientation on perceived surface albedo in binocularly viewed scenes. , 2003, Journal of vision.

[49]  Laurence T. Maloney,et al.  Illuminant cues in surface color perception: tests of three candidate cues , 2001, Vision Research.

[50]  H C Lee,et al.  Method for computing the scene-illuminant chromaticity from specular highlights. , 1986, Journal of the Optical Society of America. A, Optics and image science.

[51]  M. Carandini,et al.  Normalization as a canonical neural computation , 2011, Nature Reviews Neuroscience.

[52]  Wilson S. Geisler,et al.  Optimal defocus estimates from individual images for autofocusing a digital camera , 2012, Electronic Imaging.

[53]  David H Brainard,et al.  RenderToolbox3: MATLAB tools that facilitate physically based stimulus rendering for vision research. , 2014, Journal of vision.

[54]  G. H. Jacobs Comparative Color Vision , 1981 .

[55]  W. Geisler,et al.  Optimal disparity estimation in natural stereo images. , 2014, Journal of vision.

[56]  S. Hecht,et al.  ENERGY, QUANTA, AND VISION , 1942, The Journal of general physiology.

[57]  A. Welchman,et al.  “What Not” Detectors Help the Brain See in Depth , 2017, Current Biology.

[58]  E. Land The retinex theory of color vision. , 1977, Scientific American.

[59]  Matteo Valsecchi,et al.  Lightness perception for matte and glossy complex shapes , 2017, Vision Research.

[60]  M D'Zmura,et al.  Color constancy. III. General linear recovery of spectral descriptions for lights and surfaces. , 1994, Journal of the Optical Society of America. A, Optics, image science, and vision.

[61]  Johannes Burge,et al.  Defocus blur discrimination in natural images with natural optics. , 2015, Journal of vision.

[62]  Johannes Burge,et al.  Accuracy Maximization Analysis for Sensory-Perceptual Tasks: Computational Improvements, Filter Robustness, and Coding Advantages for Scaled Additive Noise , 2017, PLoS Comput. Biol..

[63]  Wilson S. Geisler,et al.  Optimal speed estimation in natural image movies predicts human performance , 2015, Nature Communications.

[64]  Christian Wallraven,et al.  Serial exploration of faces: comparing vision and touch. , 2012, Journal of vision.

[65]  M D'Zmura,et al.  Mechanisms of color constancy. , 1986, Journal of the Optical Society of America. A, Optics and image science.

[66]  Ayan Chakrabarti,et al.  Statistics of real-world hyperspectral images , 2011, CVPR 2011.

[67]  D. G. Albrecht,et al.  Motion selectivity and the contrast-response function of simple cells in the visual cortex , 1991, Visual Neuroscience.

[68]  D. Heeger Normalization of cell responses in cat striate cortex , 1992, Visual Neuroscience.

[69]  D H Brainard,et al.  Bayesian color constancy. , 1997, Journal of the Optical Society of America. A, Optics, image science, and vision.

[70]  Brian V. Funt,et al.  A Large Image Database for Color Constancy Research , 2003, CIC.

[71]  D. Brainard,et al.  Surface gloss and color perception of 3D objects , 2008, Visual Neuroscience.

[72]  E. Adelson Lightness Perception and Lightness Illusions , 1999 .

[73]  K. S. Gibson,et al.  Tristimulus Specification of the Munsell Book of Color from Spectrophotometric Measurements , 1943 .

[74]  Barton L. Anderson,et al.  The perceptual representation of transparency, lightness, and gloss , 2015 .

[75]  E. Mingolla,et al.  Lightness Constancy in the Presence of Specular Highlights , 2004, Psychological science.

[76]  Brian V. Funt,et al.  A data set for color research , 2002 .

[77]  L. Chalupa,et al.  The new visual neurosciences , 2014 .

[78]  Michael J. Black,et al.  A Naturalistic Open Source Movie for Optical Flow Evaluation , 2012, ECCV.

[79]  Kinjiro Amano,et al.  Spatial distributions of local illumination color in natural scenes , 2016, Vision Research.

[80]  J D Mollon,et al.  Catarrhine photopigments are optimized for detecting targets against a foliage background. , 2000, The Journal of experimental biology.

[81]  David Attewell,et al.  The distribution of reflectances within the visual environment , 2007, Vision Research.

[82]  Johannes Burge,et al.  Optimal defocus estimation in individual natural images , 2011, Proceedings of the National Academy of Sciences.

[83]  S. Morad,et al.  Ceramide-orchestrated signalling in cancer cells , 2012, Nature Reviews Cancer.

[84]  Jiri Najemnik,et al.  Optimal stimulus encoders for natural tasks. , 2009, Journal of vision.

[85]  Jitendra Malik,et al.  Color Constancy, Intrinsic Images, and Shape Estimation , 2012, ECCV.

[86]  MichaelE Rudd,et al.  Retinex-like computations in human lightness perception and their possible realization in visual cortex , 2016 .

[87]  K. Gegenfurtner,et al.  Optimal sampling of visual information for lightness judgments , 2013, Proceedings of the National Academy of Sciences.