Spatial summation in the human fovea: Do normal optical aberrations and fixational eye movements have an effect?

Psychophysical inferences about the neural mechanisms supporting spatial vision can be undermined by uncertainties introduced by optical aberrations and fixational eye movements, particularly in fovea where the neuronal grain of the visual system is fine. We examined the effect of these preneural factors on photopic spatial summation in the human fovea using a custom adaptive optics scanning light ophthalmoscope that provided control over optical aberrations and retinal stimulus motion. Consistent with previous results, Ricco's area of complete summation encompassed multiple photoreceptors when measured with ordinary amounts of ocular aberrations and retinal stimulus motion. When both factors were minimized experimentally, summation areas were essentially unchanged, suggesting that foveal spatial summation is limited by postreceptoral neural pooling. We compared our behavioral data to predictions generated with a physiologically-inspired front-end model of the visual system, and were able to capture the shape of the summation curves obtained with and without pre-retinal factors using a single postreceptoral summing filter of fixed spatial extent. Given our data and modeling, neurons in the magnocellular visual pathway, such as parasol ganglion cells, provide a candidate neural correlate of Ricco's area in the central fovea.

[1]  A. Hendrickson,et al.  Human photoreceptor topography , 1990, The Journal of comparative neurology.

[2]  Jessica I W Morgan,et al.  The fundus photo has met its match: optical coherence tomography and adaptive optics ophthalmoscopy are here to stay , 2016, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[3]  N. Logothetis,et al.  Functions of the colour-opponent and broad-band channels of the visual system , 1990, Nature.

[4]  R. W. Rodieck The First Steps in Seeing , 1998 .

[5]  Manuel Guizar-Sicairos,et al.  Efficient subpixel image registration algorithms. , 2008, Optics letters.

[6]  Lawrence C. Sincich,et al.  Measurement and correction of transverse chromatic offsets for multi-wavelength retinal microscopy in the living eye , 2012, Biomedical optics express.

[7]  Paul D. Gamlin,et al.  Fireworks in the Primate Retina In Vitro Photodynamics Reveals Diverse LGN-Projecting Ganglion Cell Types , 2003, Neuron.

[8]  Christine A. Curcio,et al.  The spatial resolution capacity of human foveal retina , 1989, Vision Research.

[9]  B. Boycott,et al.  Morphological Classification of Bipolar Cells of the Primate Retina , 1991, The European journal of neuroscience.

[10]  A. Dubra,et al.  Reflective afocal broadband adaptive optics scanning ophthalmoscope , 2011, Biomedical optics express.

[11]  M E Wilson,et al.  Invariant features of spatial summation with changing locus in the visual field , 1970, The Journal of physiology.

[12]  Barry B. Lee,et al.  Responses of primate retinal ganglion cells to perimetric stimuli. , 2011, Investigative ophthalmology & visual science.

[13]  M. A. Bouman,et al.  Psychophysical experiments on spatial summation at threshold level of the human peripheral retina , 1977, Vision Research.

[14]  Fred Rieke,et al.  The spatial structure of a nonlinear receptive field , 2012, Nature Neuroscience.

[15]  B. Boycott,et al.  Parasol (Pα) ganglion-cells of the primate fovea: Immunocytochemical staining with antibodies against GABAA-receptors , 1993, Vision Research.

[16]  Keith Mathieson,et al.  Retinal Representation of the Elementary Visual Signal , 2014, Neuron.

[17]  David J. Calkins,et al.  Microcircuitry for Two Types of Achromatic Ganglion Cell in Primate Fovea , 2007, The Journal of Neuroscience.

[18]  J S Werner,et al.  Spatial summation in human cone mechanisms from 0 degrees to 20 degrees in the superior retina. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[19]  Austin Roorda,et al.  Mapping the Perceptual Grain of the Human Retina , 2014, The Journal of Neuroscience.

[20]  J. Victor,et al.  The unsteady eye: an information-processing stage, not a bug , 2015, Trends in Neurosciences.

[21]  A. Riccò,et al.  Relazione fra il minimo angolo visuale e l'intensità luminosa. , 1877 .

[22]  E J Chichilnisky,et al.  Behavioral / Systems / Cognitive Identification and Characterization of a Y-Like Primate Retinal Ganglion Cell Type , 2007 .

[23]  P. Zuidema,et al.  Increment thresholds with various low background intensities at different locations in the peripheral retina. , 1983, Journal of the Optical Society of America.

[24]  Austin Roorda,et al.  Retinal motion estimation in adaptive optics scanning laser ophthalmoscopy. , 2006, Optics express.

[25]  R. Shapley,et al.  Quantitative analysis of retinal ganglion cell classifications. , 1976, The Journal of physiology.

[26]  Huanqing Guo,et al.  Subjective Blur Limits for Higher Order Aberrations , 2010, Optometry and vision science : official publication of the American Academy of Optometry.

[27]  Siddharth Poonja,et al.  Dynamic visual stimulus presentation in an adaptive optics scanning laser ophthalmoscope. , 2004, Journal of refractive surgery.

[28]  David Williams,et al.  The locus of fixation and the foveal cone mosaic. , 2005, Journal of vision.

[29]  F. Campbell,et al.  Optical quality of the human eye , 1966, The Journal of physiology.

[30]  Vivianne C. Smith,et al.  PII: S0042-6989(01)00085-2 , 2001 .

[31]  William H Swanson,et al.  A cortical pooling model of spatial summation for perimetric stimuli. , 2006, Journal of vision.

[32]  Roger S. Anderson,et al.  Spatial summation of S-cone ON and OFF signals: Effects of retinal eccentricity , 2003, Vision Research.

[33]  Angel Vassilev,et al.  Human S-cone vision: relationship between perceptive field and ganglion cell dendritic field. , 2005, Journal of vision.

[34]  C. Curcio,et al.  Topography of ganglion cells in human retina , 1990, The Journal of comparative neurology.

[35]  Eero P. Simoncelli,et al.  Mapping nonlinear receptive field structure in primate retina at single cone resolution , 2015, eLife.

[36]  Austin Roorda,et al.  Design of an integrated hardware interface for AOSLO image capture and cone-targeted stimulus delivery , 2010, Optics express.

[37]  Sieu K. Khuu,et al.  Spatial summation across the central visual field: implications for visual field testing. , 2015, Journal of vision.

[38]  Wilson S. Geisler,et al.  The relative contributions of pre-neural and neural factors to areal summation in the fovea , 1991, Vision Research.

[39]  H. Barlow Temporal and spatial summation in human vision at different background intensities , 1958, The Journal of physiology.

[40]  D G Pelli,et al.  Uncertainty explains many aspects of visual contrast detection and discrimination. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[41]  D. Dacey,et al.  Y-Cell Receptive Field and Collicular Projection of Parasol Ganglion Cells in Macaque Monkey Retina , 2008, The Journal of Neuroscience.

[42]  S. McKee,et al.  Visual acuity in the presence of retinal-image motion. , 1975, Journal of the Optical Society of America.

[43]  Dennis M. Levi,et al.  Equivalent intrinsic blur in spatial vision , 1990, Vision Research.

[44]  J. Pokorny,et al.  Psychophysical signatures associated with magnocellular and parvocellular pathway contrast gain. , 1997, Journal of the Optical Society of America. A, Optics, image science, and vision.

[45]  M. Rucci,et al.  Precision of sustained fixation in trained and untrained observers. , 2012, Journal of vision.

[46]  David Williams,et al.  Visual performance after correcting the monochromatic and chromatic aberrations of the eye. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[47]  Stefano Panzeri,et al.  Inference of neuronal functional circuitry with spike-triggered non-negative matrix factorization , 2017, Nature Communications.

[48]  D. G. Green,et al.  Optical and retinal factors affecting visual resolution. , 1965, The Journal of physiology.

[49]  John H. R. Maunsell,et al.  How parallel are the primate visual pathways? , 1993, Annual review of neuroscience.

[50]  Austin Roorda,et al.  Retinally stabilized cone-targeted stimulus delivery. , 2007, Optics express.

[51]  A. Stockman,et al.  The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype , 2000, Vision Research.

[52]  A. Bradley,et al.  Statistical variation of aberration structure and image quality in a normal population of healthy eyes. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[53]  Christopher S. Langlo,et al.  In vivo imaging of human cone photoreceptor inner segments. , 2014, Investigative ophthalmology & visual science.

[54]  Alfredo Dubra,et al.  Registration of 2D Images from Fast Scanning Ophthalmic Instruments , 2010, WBIR.

[55]  G. Brindley,et al.  The summation areas of human colour‐receptive mechanisms at increment threshold , 1954, The Journal of physiology.

[56]  Huanqing Guo,et al.  Blur limits for defocus, astigmatism and trefoil , 2009, Vision Research.

[57]  Paul Schedl,et al.  The locus of , 1984 .

[58]  Roger S. Anderson,et al.  Changes in Ricco’s Area with Background Luminance in the S-Cone Pathway , 2013, Optometry and vision science : official publication of the American Academy of Optometry.

[59]  C. Enroth-Cugell,et al.  The contrast sensitivity of retinal ganglion cells of the cat , 1966, The Journal of physiology.

[60]  R. Shapley,et al.  Linear and nonlinear spatial subunits in Y cat retinal ganglion cells. , 1976, The Journal of physiology.

[61]  Wilson S. Geisler,et al.  Psychometric functions of uncertain template matching observers , 2018, Journal of vision.

[62]  William S Tuten,et al.  Spatiochromatic Interactions between Individual Cone Photoreceptors in the Human Retina , 2017, The Journal of Neuroscience.

[63]  David Williams,et al.  A visual nonlinearity fed by single cones , 1992, Vision Research.

[64]  D. Whitaker,et al.  Factors affecting light-adapted pupil size in normal human subjects. , 1994, Investigative ophthalmology & visual science.

[65]  David Williams,et al.  Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope , 2011, Biomedical optics express.

[66]  J. B. Demb,et al.  Functional Circuitry of the Retinal Ganglion Cell's Nonlinear Receptive Field , 1999, The Journal of Neuroscience.

[67]  T. Hebert,et al.  Adaptive optics scanning laser ophthalmoscopy. , 2002, Optics express.

[68]  Austin Roorda,et al.  Benefits of retinal image motion at the limits of spatial vision , 2017, Journal of vision.

[69]  J. B. Demb,et al.  Bipolar Cells Contribute to Nonlinear Spatial Summation in the Brisk-Transient (Y) Ganglion Cell in Mammalian Retina , 2001, The Journal of Neuroscience.

[70]  Christopher S. Langlo,et al.  Repeatability of In Vivo Parafoveal Cone Density and Spacing Measurements , 2012, Optometry and vision science : official publication of the American Academy of Optometry.

[71]  Barry B. Lee,et al.  Chapter 7 New views of primate retinal function , 1990 .

[72]  D R Williams,et al.  Supernormal vision and high-resolution retinal imaging through adaptive optics. , 1997, Journal of the Optical Society of America. A, Optics, image science, and vision.

[73]  D. Dacey,et al.  Dendritic field size and morphology of midget and parasol ganglion cells of the human retina. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[74]  Austin Roorda,et al.  Visual performance in emmetropia and low myopia after correction of high-order aberrations. , 2007, Journal of vision.

[75]  Heinz Wässle,et al.  Immunocytochemical analysis of bipolar cells in the macaque monkey retina , 1994, The Journal of comparative neurology.

[76]  J. Victor,et al.  Temporal Encoding of Spatial Information during Active Visual Fixation , 2012, Current Biology.

[77]  S. Klein,et al.  Position sense of the peripheral retina. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[78]  John S. Werner,et al.  Spatial summation in human cone mechanisms from 0° to 20° in the superior retina , 2000 .

[79]  K Kani,et al.  Retinal sensitivity and spatial summation in the foveal and parafoveal regions. , 1981, Journal of the Optical Society of America.

[80]  Melchi M. Michel,et al.  Intrinsic position uncertainty explains detection and localization performance in peripheral vision. , 2011, Journal of vision.

[81]  David Williams,et al.  Blurring by fixational eye movements , 1992, Vision Research.

[82]  Martina Poletti,et al.  Miniature eye movements enhance fine spatial detail , 2007, Nature.

[83]  Austin Roorda,et al.  Adaptive Optics Scanning Laser Ophthalmoscope-Based Microperimetry , 2011, Optometry and vision science : official publication of the American Academy of Optometry.

[84]  Wilson S. Geisler,et al.  Decision-variable correlation , 2018, Journal of vision.

[85]  Eugénie Dalimier,et al.  Role of ocular aberrations in photopic spatial summation in the fovea. , 2010, Optics letters.

[86]  A. Watson,et al.  Quest: A Bayesian adaptive psychometric method , 1983, Perception & psychophysics.

[87]  H S Smallman,et al.  Fine grain of the neural representation of human spatial vision , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[88]  Paul R. Martin,et al.  Comparison of photoreceptor spatial density and ganglion cell morphology in the retina of human, macaque monkey, cat, and the marmoset Callithrix jacchus , 1996, The Journal of comparative neurology.

[89]  V. Glezer The receptive fields of the retina. , 1965, Vision research.