Balinski—Tucker simplex tableaus: Dimensions, degeneracy degrees, and interior points of optimal faces
暂无分享,去创建一个
[1] Elmer Earl. Branstetter,et al. The theory of linear programming , 1963 .
[2] Harvey J. Greenberg,et al. The use of the optimal partition in a linear programming solution for postoptimal analysis , 1994, Oper. Res. Lett..
[3] O. Mangasarian. Uniqueness of solution in linear programming , 1979 .
[4] Nimrod Megiddo,et al. On Finding Primal- and Dual-Optimal Bases , 1991, INFORMS J. Comput..
[5] Robert E. Bixby,et al. Recovering an optimal LP basis from an interior point solution , 1994, Oper. Res. Lett..
[6] H. J. Greenberg. An analysis of degeneracy , 1986 .
[7] Kees Roos,et al. Degeneracy in interior point methods for linear programming: a survey , 1993, Ann. Oper. Res..
[8] A. W. Tucker,et al. Duality Theory of Linear Programs: A Constructive Approach with Applications , 1969 .
[9] Alexander Schrijver,et al. Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.
[10] Shuzhong Zhang. On the Strictly Complementary Slackness Relation in Linear Programming , 1994 .
[11] Stephen B. Maurer,et al. Linear Programs and Related Problems , 1992 .
[12] Gerardus Sierksma,et al. Linear and integer programming - theory and practice , 1999, Pure and applied mathematics.
[13] J. Telgen. Minimal representation of convex polyhedral sets , 1982 .
[14] A. Tucker. 1 . Dual Systems of Homogeneous Linear Relations , 1957 .