Let there be white light: supercontinuum generation by ultrashort laser pulses

Three centuries after Newton's experiments on the decomposition of white light into its spectral components and the synthesis of white light from various colors, nonlinear-optical transformations of ultrashort laser pulses have made it possible to produce an artificial white light with unique spectral properties, controlled time duration, and a high spectral brightness. Owing to its broad and continuous spectrum, such radiation is called supercontinuum. The laser generation of white light is an interesting physical phenomenon and the relevant technology is gaining in practical implications — it offers novel solutions for optical communications and control of ultrashort laser pulses, helps to achieve an unprecedented precision in optical metrology, serves to probe the atmosphere of the Earth, and suggests new strategies for the creation of compact multiplex light sources for nonlinear spectroscopy, microscopy, and laser biomedicine. Here, we provide a review of physical mechanisms behind the laser generation of white light, examine its applications, and discuss the methods of generation of broadband radiation with controlled spectral, temporal, and phase parameters.

[1]  Charles M. Bowden,et al.  Nonlinear Optics of Photonic Crystals , 2002 .

[2]  J. Jensen,et al.  Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions , 2003, Conference on Lasers and Electro-Optics, 2003. CLEO '03..

[3]  Richard L. Fork,et al.  Generation of tunable 9 femtosecond optical pulses in the near infrared , 1989 .

[4]  D. M. Atkin,et al.  All-silica single-mode optical fiber with photonic crystal cladding. , 1996, Optics letters.

[5]  A. Zheltikov,et al.  Generation of a spectrally asymmetric third harmonic with unamplified 30-fs Cr:forsterite laser pulses in a tapered fiber , 2003 .

[6]  R. Holzwarth,et al.  Attosecond control of electronic processes by intense light fields , 2003, Nature.

[7]  Robert R. Alfano,et al.  Emission in the Region 4000 to 7000 Å Via Four-Photon Coupling in Glass , 1970 .

[8]  J. Thøgersen,et al.  Coherent anti-Stokes Raman scattering microscopy with a photonic crystal fiber based light source , 2003, Conference on Lasers and Electro-Optics, 2003. CLEO '03..

[9]  J Reichert,et al.  Accurate measurement of large optical frequency differences with a mode-locked laser. , 1999, Optics letters.

[10]  J. Price,et al.  Cladding pumped Ytterbium-doped fiber laser with holey inner and outer cladding. , 2001, Optics express.

[11]  J. Bigot,et al.  Generation of blue‐green 10 fs pulses using an excimer pumped dye amplifier , 1991 .

[12]  A. Zheltikov,et al.  Polarization-sensitive non-3ω third-harmonic generation by femtosecond Cr: Forsterite laser pulses in birefringent microchannel waveguides of photonic-crystal fibers , 2005 .

[13]  Hall,et al.  Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb , 2000, Physical review letters.

[14]  G Korn,et al.  Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers. , 2002, Physical review letters.

[15]  An anti-Stokes-shifted doublet of guided modes in a photonic-crystal fiber selectively generated and controlled with orthogonal polarizations of the pump field , 2004 .

[16]  Theodor W. Hänsch,et al.  Absolute Optical Frequency Measurement of the Cesium D 1 Line with a Mode-Locked Laser , 1999 .

[17]  R B Miles,et al.  Phase-matched waveguide four-wave mixing scaled to higher peak powers with large-core-area hollow photonic-crystal fibers. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  Michael Scalora,et al.  Photonic-crystal fiber as a multifunctional optical sensor and sample collector. , 2005, Optics express.

[19]  Aleksei M. Zheltikov,et al.  Nonlinear optics of microstructure fibers , 2004 .

[20]  D. Allan,et al.  Low-loss hollow-core silica/air photonic bandgap fibre , 2003, Nature.

[21]  Gaeta Catastrophic collapse of ultrashort pulses , 2000, Physical review letters.

[22]  K. S. Krishnan,et al.  A New Type of Secondary Radiation , 1928, Nature.

[23]  William J. Wadsworth,et al.  Supercontinuum generation in tapered fibers. , 2000, Optics letters.

[24]  F. Krausz,et al.  Soliton self-frequency shift of 6-fs pulses in photonic-crystal fibers , 2005 .

[25]  Gilles Riazuelo,et al.  Numerical simulations of the nonlinear propagation of femtosecond optical pulses in gases , 1999 .

[26]  See Leang Chin,et al.  BAND-GAP DEPENDENCE OF THE ULTRAFAST WHITE-LIGHT CONTINUUM , 1998 .

[27]  A. Zheltikov,et al.  Phase-matched four-wave mixing of sub-100-TW/ cm2 femtosecond laser pulses in isolated air-guided modes of a hollow photonic-crystal fiber. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  Rainer Leonhardt,et al.  Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber. , 2003, Optics letters.

[29]  K. Ueda,et al.  Ultrabroadband flat continuum generation in multichannel propagation of terrawatt Ti:sapphire laser pulses. , 1995, Optics letters.

[30]  A. Mysyrowicz,et al.  Nonlinear propagation of subpicosecond ultraviolet laser pulses in air. , 2000, Optics letters.

[31]  Nicolaas Bloembergen,et al.  Superbroadening in H2O and D2O by self-focused picosecond pulses from a YAlG:Nd laser , 1977 .

[32]  R. Leonhardt,et al.  Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers , 2002 .

[33]  A. Zheltikov Isolated waveguide modes of high-intensity light fields , 2004 .

[34]  Karlsson,et al.  Cherenkov radiation emitted by solitons in optical fibers. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[35]  Anatoly Efimov,et al.  Polarization dependent harmonic generation in microstructured fibers. , 2003, Optics express.

[36]  R Sauerbrey,et al.  Infrared extension of the super continuum generated by femtosecond terawatt laser pulses propagating in the atmosphere. , 2000, Optics letters.

[37]  A. Zheltikov,et al.  Probing resonant nonlinearities in organic materials using photonic-crystal fiber frequency converters , 2005 .

[38]  N. Bloembergen,et al.  The influence of electron plasma formation on superbroadening in light filaments , 1973 .

[39]  S. Chin,et al.  Moving focus in the propagation of ultrashort laser pulses in air. , 1997, Optics letters.

[40]  V. S. Shevandin,et al.  Assorted non-linear optics in microchannel waveguides of photonic-crystal fibers , 2005 .

[41]  O. Bang,et al.  Improving efficiency of supercontinuum generation in photonic crystal fibers by direct degenerate four-wave-mixing , 2002, 2002 28TH European Conference on Optical Communication.

[42]  A. M. Zheltikov Third-harmonic generation with no signal at 3ω , 2005 .

[43]  E. Wright,et al.  Power dependence of dynamic spatial replenishment of femtosecond pulses propagating in air. , 1998, Optics express.

[44]  J. Knoester,et al.  Nonlinear optical susceptibilities of disordered aggregates: A comparison of schemes to account for intermolecular interactions. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[45]  D. Wandt,et al.  Supercontinuum generation with 200 pJ laser pulses in an extruded SF6 fiber at 1560 nm. , 2003, Optics express.

[46]  I. S. Golubtsov,et al.  Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation) , 2003 .

[47]  D Reid,et al.  Femtosecond soliton pulse delivery at 800nm wavelength in hollow-core photonic bandgap fibers. , 2004, Optics express.

[48]  Knight,et al.  Single-Mode Photonic Band Gap Guidance of Light in Air. , 1999, Science.

[49]  J. Knoester,et al.  Can the exciton delocalization length in molecular aggregates be determined by pump-probe spectroscopy? , 1999 .

[50]  S. Kovalenko,et al.  Femtosecond spectroscopy of condensed phases with chirped supercontinuum probing , 1999 .

[51]  J. Misewich,et al.  Ultrafast ultraviolet pump–probe apparatus , 1986 .

[52]  Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber: influence of the frequency-dependent effective mode area , 2005 .

[53]  G. Stegeman,et al.  Raman gain measurements in bulk glass samples , 2005 .

[54]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[55]  Aleksei M. Zheltikov,et al.  Microstructure fibers as frequency-tunable sources of ultrashort chirped pulses for coherent nonlinear spectroscopy , 2004 .

[56]  Knight,et al.  Optical frequency synthesizer for precision spectroscopy , 2000, Physical review letters.

[57]  Govind P. Agrawal,et al.  Raman-induced spectral shifts in optical fibers: general theory based on the moment method , 2003 .

[58]  Chinlon Lin,et al.  New nanosecond continuum for excited-state spectroscopy , 1976 .

[59]  J. Fujimoto,et al.  Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber. , 2001, Optics letters.

[60]  Ken-ichi Kitayama,et al.  325 nm bandwidth supercontinuum generation at 10 Gbit/s using dispersion-flattened and non-decreasing normal dispersion fibre with pulse compression technique , 1998 .

[61]  A. Zheltikov,et al.  Cross-correlation frequency-resolved optical gating coherent anti-Stokes Raman scattering with frequency-converting photonic-crystal fibers. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[62]  R. Osgood,et al.  Elliptical-hole photonic crystal fibers. , 2001, Optics letters.

[63]  S. Friberg,et al.  Nonlinear optical glasses for ultrafast optical switches , 1987 .

[64]  A. Stentz,et al.  Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm , 2000 .

[65]  A. Zheltikov,et al.  Soliton-based pump-seed synchronization for few-cycle OPCPA. , 2005, Optics express.

[66]  Spanò,et al.  Nonlinear susceptibilities of molecular aggregates: Enhancement of chi (3) by size. , 1989, Physical review. A, General physics.

[67]  Andrei B. Fedotov,et al.  Three-dimensional micro-imaging of inhomogeneities in transparent media using third-harmonic generation and four-wave mixing , 2002, International Conference on Coherent and Nonlinear Optics.

[68]  A. Zheltikov,et al.  Switching intense laser pulses guided by Kerr-effect-modified modes of a hollow-core photonic-crystal fiber. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[69]  M. Nishimura,et al.  Silica-based functional fibers with enhanced nonlinearity and their applications , 1999 .

[70]  Knight,et al.  Photonic band gap guidance in optical fibers , 1998, Science.

[71]  Dirk Müller,et al.  Generation of Megawatt Optical Solitons in Hollow-Core Photonic Band-Gap Fibers , 2003, Science.

[72]  A. Zheltikov Multimode guided-wave non-3omega third-harmonic generation by ultrashort laser pulses , 2005 .

[73]  F. Salin,et al.  Conical emission from self-guided femtosecond pulses in air. , 1996, Optics letters.

[74]  Jeremie Fulconis,et al.  Photonic crystal fiber source of correlated photon pairs. , 2005 .

[75]  Chen,et al.  Radiations by "solitons" at the zero group-dispersion wavelength of single-mode optical fibers. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[76]  Michael Scalora,et al.  Laser ablation of dental tissues with picosecond pulses of 1.06-microm radiation transmitted through a hollow-core photonic-crystal fiber. , 2004, Applied optics.

[77]  M. Nisoli,et al.  Absolute-phase phenomena in photoionization with few-cycle laser pulses , 2001, Nature.

[78]  A. Zheltikov,et al.  Experimental demonstration of a photonic-crystal-fiber optical diode , 2004 .

[79]  Timothy A. Birks,et al.  Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source , 2002 .

[80]  Marco Fiorentino,et al.  Optical parametric oscillator based on four-wave mixing in microstructure fiber. , 2002, Optics letters.

[81]  V. Chebotayev,et al.  Narrow resonances of two-photon absorption of super-narrow pulses in a gas , 1977 .

[82]  Hall,et al.  Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis , 2000, Science.

[83]  A. Zheltikov,et al.  Frequency conversion of subnanojoule femtosecond laser pulses in a microstructure fiber for photochromism initiation. , 2003, Optics express.

[84]  Jonathan Shephard,et al.  High energy nanosecond laser pulses delivered single-mode through hollow-core PBG fibers. , 2004, Optics express.

[85]  Self-referencing of the carrier-envelope slip in a 6-fs visible parametric amplifier. , 2002, Optics letters.

[86]  R. Khokhlov,et al.  Reviews of Topical Problems: Self-Focusing and Diffraction of Light in a Nonlinear Medium , 1968 .

[87]  Alfons Penzkofer,et al.  Stimulated Short-Wave Radiation due to Single-Frequency Resonances of χ (3) , 1973 .

[88]  C. Bowden,et al.  White-light continuum generation and filamentation during the propagation of ultra-short laser pulses in air , 2001 .

[89]  Agrawal,et al.  Modulation instability induced by cross-phase modulation. , 1987, Physical review letters.

[90]  Corkum,et al.  Supercontinuum generation in gases. , 1986, Physical review letters.

[91]  A. Zheltikov,et al.  Polarization-demultiplexed two-color frequency conversion of femtosecond pulses in birefringent photonic-crystal fibers. , 2005, Optics express.

[92]  P. Russell,et al.  Soliton Self-Frequency Shift Cancellation in Photonic Crystal Fibers , 2003, Science.

[93]  Theodor W. Hänsch,et al.  Measuring the frequency of light with mode-locked lasers , 1999 .

[94]  D. Skryabin,et al.  Theory of the soliton self-frequency shift compensation by the resonant radiationin photonic crystal fibers. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[95]  M. Motzkus,et al.  Single-shot femtosecond coherent anti-Stokes Raman-scattering thermometry , 2002 .

[96]  A. J. Taylor,et al.  Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres , 2003, Nature.

[97]  J. Knoester,et al.  Linear absorption as a tool to measure the exciton delocalization length in molecular assemblies , 2000 .

[98]  Jean-Claude Kieffer,et al.  Filamentation of ultrashort pulse laser beams resulting from their propagation over long distances in air , 1999 .

[99]  Toshio Morioka,et al.  More than 100-wavelength-channel picosecond optical pulse generation from single laser source using supercontinuum in optical fibres , 1993 .

[100]  Yaron Silberberg,et al.  Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy , 2002, Nature.

[101]  Günter Steinmeyer,et al.  Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation , 1999 .

[102]  A. Zheltikov,et al.  Frequency–time and time–space mappings for single-shot coherent four-wave mixing with chirped pulses and broad beams , 2001 .

[103]  W. R. Wiley,et al.  Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering , 1999 .

[104]  A. Zheltikov,et al.  Coherent Raman spectroscopy with frequency-shifted and shaped pulses from a photonic-crystal fiber , 2006 .

[105]  A. Zheltikov,et al.  Coherent anti-Stokes Raman scattering in isolated air-guided modes of a hollow-core photonic-crystal fiber , 2004 .

[106]  H. Weigmann,et al.  An anomalous frequency broadening in water , 1972 .

[107]  V. S. Shevandin,et al.  Efficient anti-Stokes generation through phase-matched four-wave mixing in higher-order modes of a microstructure fiber. , 2003, Optics letters.

[108]  W. Peng,et al.  Random-hole optical fiber evanescent-wave gas sensing. , 2004, Optics letters.

[109]  Limiting of microjoule femtosecond pulses in air-guided modes of a hollow photonic-crystal fiber , 2004 .

[110]  Angelika Unterhuber,et al.  Spectral shaping of supercontinuum in a cobweb photonic-crystal fiber with sub-20-fs pulses , 2002 .

[111]  S V Chernikov,et al.  Ultrashort-pulse propagation in optical fibers. , 1990, Optics letters.

[112]  W. Tomlinson,et al.  Femtosecond white-light continuum pulses. , 1983, Optics letters.

[113]  S. Linden,et al.  Amplitude and phase characterization of weak blue ultrashort pulses by downconversion. , 1999, Optics letters.

[114]  L Salasnich,et al.  Modulational instability and complex dynamics of confined matter-wave solitons. , 2003, Physical review letters.

[115]  Jun Chen,et al.  Quantum-correlated twin photons from microstructure fiber. , 2004, Optics express.

[116]  R. Trebino Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses , 2000 .

[117]  See Leang Chin,et al.  Ultrafast white-light continuum generation and self-focusing in transparent condensed media , 1999 .

[118]  P. Corkum,et al.  Femtosecond continua produced in gases , 1989 .

[119]  D. Richardson,et al.  Modeling large air fraction holey optical fibers , 2000, Journal of Lightwave Technology.

[120]  O. Svelto,et al.  Generation of high-energy 10-fs pulses by a new pulse compression technique , 1996, Summaries of papers presented at the Conference on Lasers and Electro-Optics.

[121]  A. Zheltikov,et al.  Self-phase modulation of submicrojoule femtosecond pulses in a hollow-core photonic-crystal fiber , 2004 .

[122]  Heike Ebendorff-Heidepriem,et al.  Highly nonlinear and anomalously dispersive lead silicate glass holey fibers. , 2003, Optics express.

[123]  L. Mollenauer,et al.  Discovery of the soliton self-frequency shift. , 1986, Optics letters.

[124]  Rick Trebino,et al.  Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum. , 2002, Optics letters.

[125]  P. Andrés,et al.  Nearly zero ultraflattened dispersion in photonic crystal fibers. , 2000, Optics letters.

[126]  Theodor W. Hänsch,et al.  High-Resolution Two-Photon Spectroscopy with Picosecond Light Pulses , 1978 .

[127]  J. Broeng,et al.  Highly birefringent index-guiding photonic crystal fibers , 2001, IEEE Photonics Technology Letters.

[128]  A. M. Zheltikov,et al.  Enhanced spectral broadening of short laser pulses in high-numerical-aperture holey fibers , 2001 .

[129]  M. J. Adams An introduction to optical waveguides , 1981 .

[130]  Keith J. Blow,et al.  Theoretical description of transient stimulated Raman scattering in optical fibers , 1989 .

[131]  A. Zheltikov,et al.  Femtosecond pulses in nanophotonics , 2004 .

[132]  G. Bouwmans,et al.  High power air-clad photonic crystal fibre laser. , 2003, Optics express.

[133]  Robert R. Alfano,et al.  Intensity effects on the stimulated four photon spectra generated by picosecond pulses in optical fibers , 1987 .

[134]  Lu Chai,et al.  Frequency-tunable anti-Stokes line emission by eigenmodes of a birefringent microstructure fiber. , 2004, Optics express.

[135]  Ernst Wintner,et al.  Laser breakdown with millijoule trains of picosecond pulses transmitted through a hollow-core photonic-crystal fibre , 2003 .

[136]  Bernard Prade,et al.  Determination of the inertial contribution to the nonlinear refractive index of air, N 2 , and O 2 by use of unfocused high-intensity femtosecond laser pulses , 1997 .

[137]  G. Stegeman,et al.  Spatial modulation instability in a Kerr slab waveguide. , 2001, Optics letters.

[138]  Jasbinder S. Sanghera,et al.  Large Raman gain and nonlinear phase shifts in high-purity As 2 Se 3 chalcogenide fibers , 2004 .

[139]  A. Laubereau,et al.  Molecular Vibrations in Liquids: Direct Measurement of the Molecular Dephasing Time; Determination of the Shape of Picosecond Light Pulses , 1971 .

[140]  P. Russell Photonic Crystal Fibers , 2003, Science.

[141]  G. Mourou,et al.  Self-channeling of high-peak-power femtosecond laser pulses in air. , 1995, Optics letters.

[142]  J V Moloney,et al.  Physical factors limiting the spectral extent and band gap dependence of supercontinuum generation. , 2003, Physical review letters.

[143]  Jin Yu,et al.  Towards a supercontinuum-based infrared lidar , 2003 .

[144]  J W Nicholson,et al.  All-fiber, octave-spanning supercontinuum. , 2003, Optics letters.

[145]  A. Zheltikov,et al.  Self-channeling of subgigawatt femtosecond laser pulses in a ground-state waveguide induced in the hollow core of a photonic crystal fiber. , 2004, Optics letters.

[146]  Anatoly Efimov,et al.  Phase-matched third harmonic generation in microstructured fibers. , 2003, Optics express.

[147]  L. Provino,et al.  Supercontinuum generation in air–silica microstructured fibers with nanosecond and femtosecond pulse pumping , 2002 .

[148]  A. Zheltikov,et al.  Cross-phase-modulation-induced instability in photonic-crystal fibers. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[149]  M. Nakazawa,et al.  Fundamentals of stable continuum generation at high repetition rates , 2000, IEEE Journal of Quantum Electronics.

[150]  Hermann A. Haus,et al.  Raman response function of silica-core fibers , 1989, Annual Meeting Optical Society of America.

[151]  A. Becker,et al.  Intensity clamping of a femtosecond laser pulse in condensed matter , 2002 .

[152]  Anatoly Efimov,et al.  Nonlinear generation of very high-order UV modes in microstructured fibers. , 2003, Optics express.

[153]  I. L. Fabelinskii Seventy years of combination (Raman) scattering , 1998 .

[154]  A. V. Shcherbakov,et al.  Enhanced X(3) interactions of unamplified femtosecond Cr:forsterite laser pulses in photonic-crystal fibers , 2002 .

[155]  G. Whitham,et al.  Non-linear dispersive waves , 1965, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[156]  R. Alfano,et al.  Spectral broadening of picosecond 1.06 μ pulse in KBr , 1975 .

[157]  The friendly gas phase , 2005, Nature materials.

[158]  Hasegawa,et al.  Observation of modulational instability in optical fibers. , 1986, Physical review letters.

[159]  Kathleen Richardson,et al.  Tellurite glasses with peak absolute Raman gain coefficients up to 30 times that of fused silica. , 2003, Optics letters.

[160]  R. B. Saptsov,et al.  ∫ Erratum: "On the Relaxation of the Order Parameter in the BCS Model," Pis'ma Zh. Éksp. Teor. Fiz. 83, 414 (2006) (JETP Lett. 83, 355 (2006)) , 2007 .

[161]  F. Omenetto,et al.  Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation. , 2002, Optics express.

[162]  T A Birks,et al.  Highly birefringent photonic crystal fibers. , 2000, Optics letters.

[163]  Mikhail Alfimov,et al.  Ultrafast photonic-crystal fiber light flash for streak-camera fluorescence measurements. , 2005, Optics express.

[164]  P. Russell,et al.  Tellurite photonic crystal fiber. , 2003, Optics express.

[165]  S. G. Kosinski,et al.  Soliton self-frequency shift in a short tapered air-silica microstructure fiber. , 2001 .

[166]  R. Alfano,et al.  Observation of Self-Phase Modulation and Small-Scale Filaments in Crystals and Glasses , 1970 .

[167]  Poppe,et al.  Controlling the phase evolution of few-cycle light pulses , 2000, Physical review letters.

[168]  Yaochun Shen Principles of nonlinear optics , 1984 .

[169]  Nonlinear-optical spectral transformation of few-cycle laser pulses in photonic-crystal fibers. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[170]  Hermann A. Haus,et al.  Self-Modulation, Self-Steepening, and Spectral Development of Light in Small-Scale Trapped Filaments , 1969 .

[171]  E. Marcatili,et al.  Hollow metallic and dielectric waveguides for long distance optical transmission and lasers , 1964 .

[172]  S. Chin,et al.  Supercontinuum generation versus optical breakdown in CO(2) gas. , 1993, Optics letters.

[173]  J. Sanghera,et al.  Small-core As-Se fiber for Raman amplification. , 2003, Optics letters.

[174]  H. Washimi,et al.  Self-Trapping and Instability of Hydromagnetic Waves Along the Magnetic Field in a Cold Plasma , 1968 .

[175]  Dimitre Ouzounov,et al.  Soliton pulse compression in photonic band-gap fibers. , 2005, Optics express.

[176]  David J. Richardson,et al.  Chalcogenide holey fibres , 2000 .

[177]  M. D. Moores,et al.  Simultaneous generation of spectrally distinct third harmonics in a photonic crystal fiber. , 2001, Optics letters.

[178]  Ferenc Krausz,et al.  X-ray Pulses Approaching the Attosecond Frontier , 2001, Science.

[179]  A. Zheltikov,et al.  Enhanced four-wave mixing in a hollow-core photonic-crystal fiber. , 2003, Optics letters.

[180]  S. Borman Nonlinear Raman spectroscopy , 1982 .

[181]  J. Gordon,et al.  Theory of the soliton self-frequency shift. , 1986, Optics letters.

[182]  A. Zheltikov,et al.  Frequency–time and time–space mappings with broadband and supercontinuum chirped pulses in coherent wave mixing and pump–probe techniques , 2003 .

[183]  A. Zheltikov,et al.  Coherent four-wave mixing in excited and ionized gas media: four-photon spectrochronography, ellipsometry, and nonlinear-optical imaging of atoms and ions , 1999 .

[184]  T. Hänsch,et al.  Optical frequency metrology , 2002, Nature.

[185]  T. A. Birks,et al.  Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres , 2005, Nature.

[186]  B. Stein,et al.  Remote sensing of the atmosphere using ultrashort laser pulses , 2000 .

[187]  A. Stentz,et al.  Optical properties of high-delta air silica microstructure optical fibers. , 2000, Optics letters.

[188]  Y. Shen,et al.  Spectral broadening of ultrashort pulses in a nonlinear medium. , 1984, Optics letters.

[189]  M. Lehtonen,et al.  Supercontinuum generation in a highly biréfringent microstructured fiber , 2003 .

[190]  F. Benabid,et al.  Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber , 2002, Science.