Distributed Contour Trees

Topological techniques provide robust tools for data analysis. They are used, for example, for feature extraction, for data de-noising, and for comparison of data sets. This chapter concerns contour trees, a topological descriptor that records the connectivity of the isosurfaces of scalar functions. These trees are fundamental to analysis and visualization of physical phenomena modeled by real-valued measurements.

[1]  Vijay Natarajan,et al.  Parallel Computation of 2D Morse-Smale Complexes , 2012, IEEE Transactions on Visualization and Computer Graphics.

[2]  Henry Fuchs,et al.  A sorting classification of parallel rendering , 2008, SIGGRAPH 2008.

[3]  Hans-Christian Hege,et al.  Interactive Volume Rendering of Large Sparse Data Sets Using Adaptive Mesh Refinement Hierarchies , 2003, IEEE Trans. Vis. Comput. Graph..

[4]  Kwan-Liu Ma,et al.  Parallel volume rendering using binary-swap compositing , 1994, IEEE Computer Graphics and Applications.

[5]  Bernd Hamann,et al.  Topology-Controlled Volume Rendering , 2006, IEEE Transactions on Visualization and Computer Graphics.

[6]  Yi-Jen Chiang,et al.  Progressive Simplification of Tetrahedral Meshes Preserving All Isosurface Topologies , 2003, Comput. Graph. Forum.

[7]  Valerio Pascucci,et al.  Parallel Computation of the Topology of Level Sets , 2003, Algorithmica.

[8]  Jack Snoeyink,et al.  Computing contour trees in all dimensions , 2000, SODA '00.

[9]  Taku Komura,et al.  Topology matching for fully automatic similarity estimation of 3D shapes , 2001, SIGGRAPH.

[10]  Marcus S. Day,et al.  Feature Tracking Using Reeb Graphs , 2011, Topological Methods in Data Analysis and Visualization.

[11]  Robert B. Ross,et al.  The Parallel Computation of Morse-Smale Complexes , 2012, 2012 IEEE 26th International Parallel and Distributed Processing Symposium.

[12]  Roberto Scopigno,et al.  A modified look-up table for implicit disambiguation of Marching Cubes , 1994, The Visual Computer.

[13]  Gunther H. Weber,et al.  Augmented Topological Descriptors of Pore Networks for Material Science , 2012, IEEE Transactions on Visualization and Computer Graphics.

[14]  Gregory M. Nielson,et al.  On Marching Cubes , 2003, IEEE Trans. Vis. Comput. Graph..

[15]  Hank Childs,et al.  VisIt: An End-User Tool for Visualizing and Analyzing Very Large Data , 2011 .

[16]  Gunther H. Weber,et al.  Distributed merge trees , 2013, PPoPP '13.

[17]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[18]  Morten Revsbæk,et al.  I/O-Efficient Contour Tree Simplification , 2009, ISAAC.

[19]  Robert B. Ross,et al.  A configurable algorithm for parallel image-compositing applications , 2009, Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis.

[20]  H. Edelsbrunner,et al.  Persistent Homology — a Survey , 2022 .

[21]  Vijay Natarajan,et al.  Parallel Computation of 3D Morse‐Smale Complexes , 2012, Comput. Graph. Forum.

[22]  Valerio Pascucci,et al.  Contour trees and small seed sets for isosurface traversal , 1997, SCG '97.

[23]  Jack Snoeyink,et al.  Flexible isosurfaces: Simplifying and displaying scalar topology using the contour tree , 2010, Comput. Geom..

[24]  Kelly P. Gaither,et al.  Data-parallel mesh connected components labeling and analysis , 2011, EGPGV '11.