Suppression of fluorescence phonon sideband from nitrogen vacancy centers in diamond nanocrystals by substrate effect.

Substrates effect is observed on the suppression of the phonon sideband from nitrogen vacancy (NV) centers in 50nm diamond nanocrystals at cryogenic temperatures. As a quantitative parameter of the population of phonon sidebands, the Debye-Waller factor is estimated from fluorescence spectra on glass, silicon, and silica-on-silicon substrates. Fluorescence spectra of negatively charged NV centers in nanodiamonds on silica-on-silicon substrates have average and maximum Debye-Waller factors of 12.7% (which is about six times greater than that of samples on glass substrates) and 19.3%, respectively. This effect is expected to be very important for future applications of NV centers in quantum information science and nanosensing.

[1]  Andrew D Greentree,et al.  Towards a picosecond transform-limited nitrogen-vacancy based single photon source. , 2007, Optics express.

[2]  Todd A. Brun,et al.  Quantum Computing , 2011, Computer Science, The Hardware, Software and Heart of It.

[3]  Shigeki Takeuchi,et al.  Realization of a Knill-Laflamme-Milburn controlled-NOT photonic quantum circuit combining effective optical nonlinearities , 2010, Proceedings of the National Academy of Sciences.

[4]  Yumin Shen,et al.  Zero-phonon linewidth of single nitrogen vacancy centers in diamond nanocrystals , 2008 .

[5]  P. Hemmer,et al.  A diamond nanowire single-photon source. , 2009, Nature nanotechnology.

[6]  Pedram Khalili Amiri,et al.  Quantum computers , 2003 .

[7]  Andreas W. Schell,et al.  Enhancement of the zero phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity , 2010, 1008.3504.

[8]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[9]  F. Jelezko,et al.  Low temperature studies of the excited-state structure of negatively charged nitrogen-vacancy color centers in diamond. , 2009, Physical review letters.

[10]  Oliver Benson,et al.  Controlled coupling of NV defect centers to plasmonic and photonic nanostructures , 2010 .

[11]  Mayer,et al.  Stable solid-state source of single photons , 2000, Physical review letters.

[12]  M. N. Sapozhnikov Zero‐Phonon Transitions in the Optical Spectra of Impurity Molecular Crystals , 1976 .

[13]  L. Childress,et al.  Supporting Online Material for , 2006 .

[14]  Archil Avaliani,et al.  Quantum Computers , 2004, ArXiv.

[15]  Andrei Faraon,et al.  Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity , 2010, 1012.3815.

[16]  Keiji Sasaki,et al.  An Entanglement Filter , 2009, Science.

[17]  Dirk Englund,et al.  Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity. , 2010, Nano letters.

[18]  Oliver Benson,et al.  Plasmon-enhanced single photon emission from a nanoassembled metal-diamond hybrid structure at room temperature. , 2009, Nano letters.

[19]  Young-Shin Park,et al.  Cavity QED with diamond nanocrystals and silica microspheres. , 2006, Nano letters.

[20]  O. Benson,et al.  Ultrabright and efficient single-photon generation based on nitrogen-vacancy centres in nanodiamonds on a solid immersion lens , 2010, 1011.1822.

[21]  Fedor Jelezko,et al.  Single defect centres in diamond: A review , 2006 .

[22]  R. H. Silsbee Thermal Broadening of the Mössbauer Line and of Narrow-Line Electronic Spectra in Solids , 1962 .

[23]  Hong-Quan Zhao,et al.  Highly efficient coupling of photons from nanoemitters into single-mode optical fibers. , 2011, Nano letters.

[24]  Jacob M. Taylor,et al.  Nanoscale magnetic sensing with an individual electronic spin in diamond , 2008, Nature.

[25]  L. Lombez,et al.  Low-temperature optical characterization of a near-infrared single-photon emitter in nanodiamonds , 2009, 0909.2962.

[26]  S. Prawer,et al.  Single nitrogen vacancy centers in chemical vapor deposited diamond nanocrystals. , 2007, Nano letters (Print).

[27]  P Hemmer,et al.  Stark shift control of single optical centers in diamond. , 2006, Physical Review Letters.

[28]  Keiji Sasaki,et al.  Beating the Standard Quantum Limit with Four-Entangled Photons , 2007, Science.