Whole-cell bioreporters for the detection of bioavailable metals.

Whole-cell bioreporters are living microorganisms that produce a specific, quantifiable output in response to target chemicals. Typically, whole-cell bioreporters combine a sensor element for the substance of interest and a reporter element coding for an easily detectable protein. The sensor element is responsible for recognizing the presence of an analyte. In the case of metal bioreporters, the sensor element consists of a DNA promoter region for a metal-binding transcription factor fused to a promoterless reporter gene that encodes a signal-producing protein. In this review, we provide an overview of specific whole-cell bioreporters for heavy metals. Because the sensing of metals by bioreporter microorganisms is usually based on heavy metal resistance/homeostasis mechanisms, the basis of these mechanisms will also be discussed. The goal here is not to present a comprehensive summary of individual metal-specific bioreporters that have been constructed, but rather to express views on the theory and applications of metal-specific bioreporters and identify some directions for future research and development.

[1]  S. Colowick,et al.  Methods in Enzymology , Vol , 1966 .

[2]  T. Creighton Methods in Enzymology , 1968, The Yale Journal of Biology and Medicine.

[3]  J. W. Hastings,et al.  BIOLUMINESCENCE AND CHEMILUMINESCENCE , 1976, Photochemistry and photobiology.

[4]  A. Jagendorf Methods in enzymology, vol. 57: Bioluminescence and chemiluminescence: Edited by Marlene DeLuca, Academic Press, New York, 1978. 672 pp. $45.00 , 1979 .

[5]  Z. Tynecka,et al.  Reduced cadmium transport determined by a resistance plasmid in Staphylococcus aureus , 1981, Journal of bacteriology.

[6]  J. D. Winefordner,et al.  Limit of detection. A closer look at the IUPAC definition , 1983 .

[7]  Effect of Salt Concentration on the Cadmium Tolerance of a Moderately Halophilic Cadmium Tolerant Pseudomonas sp. , 1984 .

[8]  S. Silver,et al.  Cadmium-resistant mutant of Bacillus subtilis 168 with reduced cadmium transport , 1985, Journal of bacteriology.

[9]  S. Silver,et al.  Cadmium uptake in Escherichia coli K-12 , 1985, Journal of bacteriology.

[10]  J. Neilands,et al.  Ferric uptake regulation protein acts as a repressor, employing iron (II) as a cofactor to bind the operator of an iron transport operon in Escherichia coli. , 1987, Biochemistry.

[11]  K. Wood,et al.  Photographic detection of luminescence in Escherichia coli containing the gene for firefly luciferase. , 1987, Analytical biochemistry.

[12]  T. Beveridge,et al.  Metal Ions and Bacteria , 1989 .

[13]  G. Nucifora,et al.  Cadmium resistance from Staphylococcus aureus plasmid pI258 cadA gene results from a cadmium-efflux ATPase. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[14]  K. Scott,et al.  TOXICITY OF CADMIUM IN SEDIMENTS: THE ROLE OF ACID VOLATILE SULFIDE , 1990 .

[15]  S. Silver,et al.  Nucleotide sequence and expression of a plasmid-encoded chromate resistance determinant from Alcaligenes eutrophus. , 1990, The Journal of biological chemistry.

[16]  B. Frantz,et al.  DNA distortion accompanies transcriptional activation by the metal-responsive gene-regulatory protein MerR. , 1990, Biochemistry.

[17]  T. O’Halloran,et al.  Ultrasensitivity and heavy-metal selectivity of the allosterically modulated MerR transcription complex. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[18]  G. Sayler,et al.  Rapid, Sensitive Bioluminescent Reporter Technology for Naphthalene Exposure and Biodegradation , 1990, Science.

[19]  H. Ohtake,et al.  Cloning, nucleotide sequence, and expression of the chromate resistance determinant of Pseudomonas aeruginosa plasmid pUM505 , 1990, Journal of bacteriology.

[20]  M. N. Hughes,et al.  Metal speciation and microbial growth-the hard (and soft) facts , 1991 .

[21]  D. Holmes,et al.  Construction and Evaluation of a Self‐Luminescent Biosensor a , 1991, Annals of the New York Academy of Sciences.

[22]  S. Silver,et al.  Regulation of the cadA cadmium resistance determinant of Staphylococcus aureus plasmid pI258 , 1991, Journal of bacteriology.

[23]  J. Wu,et al.  The ArsR protein is a trans‐acting regulatory protein , 1991, Molecular microbiology.

[24]  E. Meighen,et al.  Molecular biology of bacterial bioluminescence. , 1991, Microbiological reviews.

[25]  S. Silver,et al.  Regulation and expression of the arsenic resistance operon from Staphylococcus aureus plasmid pI258 , 1992, Journal of bacteriology.

[26]  A. Peschel,et al.  Expression and regulation of the antimonite, arsenite, and arsenate resistance operon of Staphylococcus xylosus plasmid pSX267 , 1992, Journal of bacteriology.

[27]  A. Summers,et al.  Roles of the Tn21 merT, merP, and merC gene products in mercury resistance and mercury binding , 1992, Journal of bacteriology.

[28]  H. Liesegang,et al.  Characterization of the inducible nickel and cobalt resistance determinant cnr from pMOL28 of Alcaligenes eutrophus CH34 , 1993, Journal of bacteriology.

[29]  R. Burlage,et al.  Bioluminescent sensors for detection of bioavailable Hg(II) in the environment , 1993, Applied and environmental microbiology.

[30]  J. Germida,et al.  Effects of chemical speciation in growth media on the toxicity of mercury(II) , 1993, Applied and environmental microbiology.

[31]  D. Winge,et al.  Distinct metal binding configurations in ACE1. , 1993, Biochemistry.

[32]  Long-Fei Wu,et al.  The nik operon of Escherichia coli encodes a periplasmic binding‐protein‐dependent transport system for nickel , 1993, Molecular microbiology.

[33]  M Mergeay,et al.  luxAB gene fusions with the arsenic and cadmium resistance operons of Staphylococcus aureus plasmid pI258. , 1993, FEMS microbiology letters.

[34]  H. Schlegel,et al.  Combined nickel-cobalt-cadmium resistance encoded by the ncc locus of Alcaligenes xylosoxidans 31A , 1994, Journal of bacteriology.

[35]  M. Forsman,et al.  An aromatic effector specificity mutant of the transcriptional regulator DmpR overcomes the growth constraints of Pseudomonas sp. strain CF600 on para-substituted methylphenols , 1994, Journal of bacteriology.

[36]  T. K. Misra,et al.  Purification and characterization of a novel organometallic receptor protein regulating the expression of the broad spectrum mercury-resistant operon of plasmid pDU1358. , 1994, The Journal of biological chemistry.

[37]  K B Konstantinov,et al.  Rapid and sensitive pollutant detection by induction of heat shock gene-bioluminescence gene fusions , 1994, Applied and environmental microbiology.

[38]  M. Guerinot Microbial iron transport. , 1994, Annual review of microbiology.

[39]  Marko Virta,et al.  A Luminescence-Based Mercury Biosensor , 1995 .

[40]  A. Odermatt,et al.  Copper and Silver Transport by CopB-ATPase in Membrane Vesicles of Enterococcus hirae(*) , 1995, The Journal of Biological Chemistry.

[41]  M. Karp,et al.  Comparison of gram positive and gram negative bacterial strains cloned with different types of luciferase genes in bioluminescence cytotoxicity tests , 1995 .

[42]  P. Quevauviller,et al.  1. Quality assurance for environmental analysis , 1995 .

[43]  Allan M. Ure,et al.  20. Single and sequential extraction schemes for trace metal speciation in soil and sediment , 1995 .

[44]  L. Diels,et al.  Bacterial biosensors for the toxicity assessment of solid wastes , 1996 .

[45]  R. Larossa,et al.  Oxidative stress detection with Escherichia coli harboring a katG'::lux fusion , 1996 .

[46]  G Horneck,et al.  A biosensor for environmental genotoxin screening based on an SOS lux assay in recombinant Escherichia coli cells , 1997, Applied and environmental microbiology.

[47]  T. Barkay,et al.  Cell-density-dependent sensitivity of a mer-lux bioassay , 1997, Applied and environmental microbiology.

[48]  M Virta,et al.  Recombinant luminescent bacteria for measuring bioavailable arsenite and antimonite , 1997, Applied and environmental microbiology.

[49]  C. Rensing,et al.  The zntA gene of Escherichia coli encodes a Zn(II)-translocating P-type ATPase. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[50]  M. Gillman,et al.  Effects of dissolved organic carbon and salinity on bioavailability of mercury , 1997, Applied and environmental microbiology.

[51]  R. Larossa,et al.  Detection of DNA damage by use of Escherichia coli carrying recA'::lux, uvrA'::lux, or alkA'::lux reporter plasmids , 1997, Applied and environmental microbiology.

[52]  J. Trevors,et al.  Metal-microbe interactions: contemporary approaches. , 1997, Advances in microbial physiology.

[53]  C. Rensing,et al.  New functions for the three subunits of the CzcCBA cation-proton antiporter , 1997, Journal of bacteriology.

[54]  C. Rensing,et al.  Pb(II)-translocating P-type ATPases* , 1998, The Journal of Biological Chemistry.

[55]  Gary S. Sayler,et al.  Physiological considerations of environmental applications of lux reporter fusions , 1998 .

[56]  R. Tsien,et al.  green fluorescent protein , 2020, Catalysis from A to Z.

[57]  Dietrich H. Nies,et al.  Alcaligenes eutrophus as a Bacterial Chromate Sensor , 1998, Applied and Environmental Microbiology.

[58]  M Virta,et al.  Luminescent bacterial sensor for cadmium and lead. , 1998, Biosensors & bioelectronics.

[59]  M Virta,et al.  Measurement of firefly luciferase reporter gene activity from cells and lysates using Escherichia coli arsenite and mercury sensors. , 1999, Analytical biochemistry.

[60]  G. Gellert,et al.  Development of an optimal bacterial medium based on the growth inhibition assay with Vibrio fischeri. , 1999, Chemosphere.

[61]  N. Brown,et al.  ZntR is a Zn(II)‐responsive MerR‐like transcriptional regulator of zntA in Escherichia coli , 1999, Molecular microbiology.

[62]  V. de Lorenzo,et al.  Opening the Iron Box: Transcriptional Metalloregulation by the Fur Protein , 1999, Journal of bacteriology.

[63]  A. Watson,et al.  Cd(II)-Responsive and Constitutive Mutants Implicate a Novel Domain in MerR , 1999, Journal of bacteriology.

[64]  M. Solioz,et al.  Copper homeostasis in Enterococcus hirae. , 1999, Advances in experimental medicine and biology.

[65]  R. Moreno-Sánchez,et al.  Chromate Efflux by Means of the ChrA Chromate Resistance Protein from Pseudomonas aeruginosa , 1999, Journal of bacteriology.

[66]  J. Lloyd,et al.  Whole cell- and protein-based biosensors for the detection of bioavailable heavy metals in environmental samples , 1999 .

[67]  M. Karp,et al.  Detecting bioavailable toxic metals and metalloids from natural water samples using luminescent sensor bacteria , 2000 .

[68]  R Y Tsien,et al.  Biochemistry, mutagenesis, and oligomerization of DsRed, a red fluorescent protein from coral. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[69]  J Rishpon,et al.  Online and in situ monitoring of environmental pollutants: electrochemical biosensing of cadmium. , 2000, Environmental microbiology.

[70]  M. R. Binet,et al.  Cd(II), Pb(II) and Zn(II) ions regulate expression of the metal‐transporting P‐type ATPase ZntA in Escherichia coli , 2000, FEBS letters.

[71]  R D Schmid,et al.  Reporter gene bioassays in environmental analysis , 2000, Fresenius' journal of analytical chemistry.

[72]  S. Lindow,et al.  Heterogeneity of iron bioavailability on plants assessed with a whole-cell GFP-based bacterial biosensor. , 2000, Microbiology.

[73]  Luis López-Maury,et al.  A Gene Cluster Involved in Metal Homeostasis in the Cyanobacterium Synechocystis sp. Strain PCC 6803 , 2000, Journal of bacteriology.

[74]  M. Mergeay,et al.  Regulation of the cnr Cobalt and Nickel Resistance Determinant of Ralstonia eutropha (Alcaligenes eutrophus) CH34 , 2000, Journal of bacteriology.

[75]  S. Cole,et al.  Identification of the Escherichia coli K‐12 Nramp orthologue (MntH) as a selective divalent metal ion transporter , 2000, Molecular microbiology.

[76]  Ralph R. Turner,et al.  Application of a mer-lux biosensor for estimating bioavailable mercury in soil , 2000 .

[77]  S. Sørensen,et al.  Versatile biosensor vectors for detection and quantification of mercury. , 2000, FEMS microbiology letters.

[78]  G. Barrett,et al.  Genetically engineered whole-cell sensing systems: coupling biological recognition with reporter genes. , 2000, Chemical reviews.

[79]  T. Kairesalo,et al.  Mobility and bioavailability of lead in contaminated boreal forest soil , 2000 .

[80]  D. Adriano Trace elements in terrestrial environments , 2001 .

[81]  N. Brown,et al.  CueR (YbbI) of Escherichia coli is a MerR family regulator controlling expression of the copper exporter CopA , 2001, Molecular microbiology.

[82]  M Virta,et al.  Detection of organomercurials with sensor bacteria. , 2001, Analytical chemistry.

[83]  V. de Lorenzo,et al.  À la carte transcriptional regulators: unlocking responses of the prokaryotic enhancer‐binding protein XylR to non‐natural effectors , 2001, Molecular microbiology.

[84]  M. Dollard,et al.  Assessment of heavy metal bioavailability using Escherichia colizntAp::lux and copAp::lux-based biosensors , 2001, Applied Microbiology and Biotechnology.

[85]  C. Rensing,et al.  NreB from Achromobacter xylosoxidans 31A Is a Nickel-Induced Transporter Conferring Nickel Resistance , 2001, Journal of bacteriology.

[86]  M Mergeay,et al.  A microbial biosensor to predict bioavailable nickel in soil and its transfer to plants. , 2001, Environmental pollution.

[87]  M. Romantschuk,et al.  A microcosmos study on the effects of cd-containing wood ash on the coniferous humus fungal community and the cd bioavailability , 2001 .

[88]  Domy C. Adriano,et al.  Trace Elements in Terrestrial Environments: Biogeochemistry, Bioavailability, and Risks of Metals , 2001 .

[89]  Aldo Roda,et al.  SENSITIVE DETERMINATION OF URINARY MERCURY(II) BY A BIOLUMINESCENT TRANSGENIC BACTERIA-BASED BIOSENSOR , 2001 .

[90]  S. F. D’souza,et al.  Microbial biosensors. , 2001, Biosensors & bioelectronics.

[91]  Seon-Woo Lee,et al.  Chromosomal Locus for Cadmium Resistance in Pseudomonas putida Consisting of a Cadmium-Transporting ATPase and a MerR Family Response Regulator , 2001, Applied and Environmental Microbiology.

[92]  O. Nybroe,et al.  Identification of copper‐induced genes in Pseudomonas fluorescens and use of a reporter strain to monitor bioavailable copper in soil , 2001 .

[93]  Anne Kahru,et al.  Construction and use of specific luminescent recombinant bacterial sensors for the assessment of bioavailable fraction of cadmium, zinc, mercury and chromium in the soil , 2002 .

[94]  I. O. Wallinder,et al.  Runoff rates, chemical speciation and bioavailability of copper released from naturally patinated copper. , 2002, Environmental pollution.

[95]  Mohammad Sohel Rahman,et al.  Effectiveness and reliability of arsenic field testing kits: are the million dollar screening projects effective or not? , 2002, Environmental science & technology.

[96]  B. Rosen,et al.  Biochemistry of arsenic detoxification , 2002, FEBS letters.

[97]  C. Rensing,et al.  ZupT Is a Zn(II) Uptake System in Escherichia coli , 2002, Journal of bacteriology.

[98]  B. Glick,et al.  Rapidly maturing variants of the Discosoma red fluorescent protein (DsRed) , 2002, Nature Biotechnology.

[99]  R. McKay,et al.  Construction and initial characterization of a luminescent Synechococcus sp. PCC 7942 Fe-dependent bioreporter. , 2002, FEMS microbiology letters.

[100]  O. Wolfbeis,et al.  Engineered Bacteria Based Biosensors for Monitoring Bioavailable Heavy Metals , 2002 .

[101]  S. Khan,et al.  The functional analysis of directed amino-acid alterations in ZntR from Escherichia coli. , 2002, Biochemical and biophysical research communications.

[102]  Shimshon Belkin,et al.  Recombinant microorganisms as environmental biosensors: pollutants detection by Escherichia coli bearing fabA'::lux fusions. , 2002, Journal of biotechnology.

[103]  G. Veglia,et al.  Selectivity in heavy metal- binding to peptides and proteins. , 2002, Biopolymers.

[104]  V. Viviani,et al.  The origin, diversity, and structure function relationships of insect luciferases , 2002, Cellular and Molecular Life Sciences CMLS.

[105]  Colin R. Janssen,et al.  Bioavailability of zinc in runoff water from roofing materials. , 2002, Chemosphere.

[106]  M. Karp,et al.  Reporter genes lucFF, luxCDABE, gfp, and dsred have different characteristics in whole-cell bacterial sensors. , 2002, Analytical biochemistry.

[107]  C. Rensing,et al.  Escherichia coli mechanisms of copper homeostasis in a changing environment. , 2003, FEMS microbiology reviews.

[108]  M. Romantschuk,et al.  Assessing sediment toxicity and arsenite concentration with bacterial and traditional methods. , 2003, Environmental pollution.

[109]  Sylvia Daunert,et al.  Luminescence-based whole-cell-sensing systems for cadmium and lead using genetically engineered bacteria , 2003, Analytical and bioanalytical chemistry.

[110]  M. Solioz,et al.  Measurement of cytoplasmic copper, silver, and gold with a lux biosensor shows copper and silver, but not gold, efflux by the CopA ATPase of Escherichia coli , 2003, FEBS letters.

[111]  Martin Romantschuk,et al.  Toxicity and bioavailability to bacteria of particle-associated arsenite and mercury. , 2003, Chemosphere.

[112]  Steven W. Wilhelm,et al.  PHYSIOLOGICAL CHARACTERIZATION OF A SYNECHOCOCCUS SP. (CYANOPHYCEAE) STRAIN PCC 7942 IRON‐DEPENDENT BIOREPORTER FOR FRESHWATER ENVIRONMENTS 1 , 2003 .

[113]  M. Karp,et al.  One‐step measurement of firefly luciferase activity in yeast , 2003, Yeast.

[114]  N. Brown,et al.  The MerR family of transcriptional regulators. , 2003, FEMS microbiology reviews.

[115]  B. Applegate,et al.  Characterization and field trials of a bioluminescent bacterial reporter of iron bioavailability , 2003 .

[116]  Marko Virta,et al.  Analysis of arsenic bioavailability in contaminated soils , 2003, Environmental toxicology and chemistry.

[117]  M. H. Holoka,et al.  Effect of pH on mercury uptake by an aquatic bacterium: implications for Hg cycling. , 2003, Environmental science & technology.

[118]  D. Nies,et al.  Efflux-mediated heavy metal resistance in prokaryotes. , 2003, FEMS microbiology reviews.

[119]  W. Peijnenburg,et al.  Monitoring approaches to assess bioaccessibility and bioavailability of metals: matrix issues. , 2003, Ecotoxicology and environmental safety.

[120]  R. Oremland,et al.  The Ecology of Arsenic , 2003 .

[121]  A. Morby,et al.  Characterisation of CadR from Pseudomonas aeruginosa: a Cd(II)-responsive MerR homologue. , 2003, Biochemical and biophysical research communications.

[122]  A. Morby,et al.  Zn(II) metabolism in prokaryotes. , 2003, FEMS microbiology reviews.

[123]  N. Brown,et al.  The Escherichia coli Copper-responsivecopA Promoter Is Activated by Gold* , 2003, The Journal of Biological Chemistry.

[124]  K. Killham Interactions between Soil Particles and Microorganisms—Impact on the Terrestrial Ecosystem , 2003 .

[125]  Susan M. Miller,et al.  Bacterial mercury resistance from atoms to ecosystems. , 2003, FEMS microbiology reviews.

[126]  G. Paton,et al.  The role of host organism, transcriptional switches and reporter mechanisms in the performance of Hg‐induced biosensors , 2004, Journal of applied microbiology.

[127]  Kevin C Jones,et al.  Defining bioavailability and bioaccessibility of contaminated soil and sediment is complicated. , 2004, Environmental science & technology.

[128]  Recombinant luminescent bacterial sensors for the measurement of bioavailability of cadmium and lead in soils polluted by metal smelters. , 2004, Chemosphere.

[129]  Marko Virta,et al.  Detection of bioavailable heavy metals in EILATox‐Oregon samples using whole‐cell luminescent bacterial sensors in suspension or immobilized onto fibre‐optic tips , 2004, Journal of applied toxicology : JAT.

[130]  K. Hantke Selection procedure for deregulated iron transport mutants (fur) in Escherichia coli K 12: fur not only affects iron metabolism , 1987, Molecular and General Genetics MGG.

[131]  J. R. van der Meer,et al.  Illuminating the detection chain of bacterial bioreporters. , 2004, Environmental microbiology.

[132]  Jaco Vangronsveld,et al.  Biosensors for detection of mercury in contaminated soils. , 2004, Environmental pollution.

[133]  Jan Roelof van der Meer,et al.  Development of a Set of Simple Bacterial Biosensors for Quantitative and Rapid Measurements of Arsenite and Arsenate in Potable Water. , 2004, Environmental Science and Technology.

[134]  Sylvia Daunert,et al.  Fluorescence-based sensing system for copper using genetically engineered living yeast cells. , 2004, Biotechnology and bioengineering.

[135]  J. Vangronsveld,et al.  Selected bioavailability assays to test the efficacy of amendment-induced immobilization of lead in soils , 2003, Plant and Soil.

[136]  E. Brown,et al.  Bioavailable Iron in Oligotrophic Lake Superior Assessed Using Biological Reporters , 2005 .

[137]  R. Larossa,et al.  Interaction of lead nitrate and cadmium chloride withEscherichia coli K-12 andSalmonella typhimurium global regulatory mutants , 1995, Journal of Industrial Microbiology.

[138]  A. Ivask,et al.  Lead and Cu in contaminated urban soils: extraction with chemical reagents and bioluminescent bacteria and yeast. , 2005, The Science of the total environment.

[139]  Jan Roelof van der Meer,et al.  Effect of Groundwater Composition on Arsenic Detection by Bacterial Biosensors , 2005 .

[140]  J. A. Smith,et al.  Secondary Transporters for Nickel and Cobalt Ions: Theme and Variations , 2005, Biometals.

[141]  A. Ivask,et al.  Analysis of sorption and bioavailability of different species of mercury on model soil components using XAS techniques and sensor bacteria , 2005, Analytical and bioanalytical chemistry.

[142]  V. H. Liao,et al.  Development and testing of a green fluorescent protein‐based bacterial biosensor for measuring bioavailable arsenic in contaminated groundwater samples , 2005, Environmental toxicology and chemistry.

[143]  Kenneth J. T. Livi,et al.  Effects of in situ remediation on the speciation and bioavailability of zinc in a smelter contaminated soil , 2005 .

[144]  S. Silver,et al.  A bacterial view of the periodic table: genes and proteins for toxic inorganic ions , 2005, Journal of Industrial Microbiology and Biotechnology.

[145]  Michael Berg,et al.  Bacterial bioassay for rapid and accurate analysis of arsenic in highly variable groundwater samples. , 2005, Environmental science & technology.

[146]  A. Ivask,et al.  Biotests and biosensors in ecotoxicological risk assessment of field soils polluted with zinc, lead, and cadmium , 2005, Environmental toxicology and chemistry.

[147]  M. Mandrand-Berthelot,et al.  Identification of rcnA (yohM), a Nickel and Cobalt Resistance Gene in Escherichia coli , 2005, Journal of bacteriology.

[148]  O. Nybroe,et al.  Bioavailability and toxicity of soil particle‐associated copper as determined by two bioluminescent Pseudomonas fluorescens biosensor strains , 2006, Environmental toxicology and chemistry.

[149]  A Comparison of MER::LUX Whole Cell Biosensors And Moss, A Bioindicator, For Estimating Mercury Pollution , 2006 .

[150]  P. Boyd,et al.  Luminescent Whole-Cell Cyanobacterial Bioreporter for Measuring Fe Availability in Diverse Marine Environments , 2006, Applied and Environmental Microbiology.

[151]  Edward Peltier,et al.  Assessing nickel bioavailability in smelter-contaminated soils. , 2006, The Science of the total environment.

[152]  M. Romantschuk,et al.  Construction and use of broad host range mercury and arsenite sensor plasmids in the soil bacterium Pseudomonas fluorescens OS8 , 2001, Microbial Ecology.

[153]  C. Hassler,et al.  Bioavailability of iron sensed by a phytoplanktonic Fe-bioreporter. , 2006, Environmental science & technology.

[154]  V. H. Liao,et al.  Assessment of heavy metal bioavailability in contaminated sediments and soils using green fluorescent protein-based bacterial biosensors. , 2006, Environmental pollution.

[155]  O. Nybroe,et al.  Decreased abundance and diversity of culturable Pseudomonas spp. populations with increasing copper exposure in the sugar beet rhizosphere. , 2006, FEMS microbiology ecology.

[156]  Jan Roelof van der Meer,et al.  Whole-cell living biosensors—are they ready for environmental application? , 2006, Applied Microbiology and Biotechnology.

[157]  C. Hassler,et al.  OPTIMIZATION OF IRON‐DEPENDENT CYANOBACTERIAL (SYNECHOCOCCUS, CYANOPHYCEAE) BIOREPORTERS TO MEASURE IRON BIOAVAILABILITY 1 , 2006 .

[158]  C. Davidson,et al.  Chemical Speciation in Soils and Related Materials by Selective Chemical Extraction , 2007 .

[159]  Joachim Goedhart,et al.  Improved green and blue fluorescent proteins for expression in bacteria and mammalian cells. , 2007, Biochemistry.

[160]  Anne Kahru,et al.  Fibre-optic bacterial biosensors and their application for the analysis of bioavailable Hg and As in soils and sediments from Aznalcollar mining area in Spain. , 2007, Biosensors & bioelectronics.

[161]  R. Sparling,et al.  Effect of pH on Intracellular Accumulation of Trace Concentrations of Hg(II) in Escherichia coli under Anaerobic Conditions, as Measured Using a mer-lux Bioreporter , 2007, Applied and Environmental Microbiology.

[162]  Jan Roelof van der Meer,et al.  Analysis of bioavailable arsenic in rice with whole cell living bioreporter bacteria. , 2007, Journal of agricultural and food chemistry.

[163]  C. Leygraf,et al.  Release and chemical speciation of copper from anti‐fouling paints with different active copper compounds in artificial seawater , 2007 .

[164]  Identification of the Cadmium-Inducible Hansenula polymorpha SEO1 Gene Promoter by Transcriptome Analysis and Its Application to Whole-Cell Heavy-Metal Detection Systems , 2007, Applied and Environmental Microbiology.

[165]  Carlos Cervantes,et al.  Mechanisms of bacterial resistance to chromium compounds , 2008, BioMetals.

[166]  M. Tamminen,et al.  Quantification of ecotoxicological tests based on bioluminescence using Polaroid film. , 2007, Chemosphere.

[167]  C. Leygraf,et al.  The interaction between concrete pavement and corrosion-induced copper runoff from buildings , 2008, Environmental monitoring and assessment.

[168]  Shimshon Belkin,et al.  Microbial reporters of metal bioavailability , 2008, Microbial biotechnology.

[169]  Anne Kahru,et al.  Bioavailability of Cd, Zn and Hg in Soil to Nine Recombinant Luminescent Metal Sensor Bacteria , 2008, Sensors.

[170]  J. R. van der Meer,et al.  Mutant HbpR transcription activator isolation for 2‐chlorobiphenyl via green fluorescent protein‐based flow cytometry and cell sorting , 2007, Microbial biotechnology.

[171]  Q. Huang,et al.  Construction of two lux-tagged Hg2+-specific biosensors and their luminescence performance , 2008, Applied Microbiology and Biotechnology.

[172]  A. Ivask,et al.  Interplay of Different Transporters in the Mediation of Divalent Heavy Metal Resistance in Pseudomonas putida KT2440 , 2007, Journal of bacteriology.

[173]  O. Nybroe,et al.  Differential bioavailability of copper complexes to bioluminescent Pseudomonas fluorescens reporter strains , 2008, Environmental toxicology and chemistry.

[174]  A. Chung,et al.  The Chromate-Inducible chrBACF Operon from the Transposable Element TnOtChr Confers Resistance to Chromium(VI) and Superoxide , 2008, Journal of bacteriology.