Energy output characteristics and safety design of Al-AlH3 composite dust for energetic material additive

[1]  Yun Zhang,et al.  Thermal Decomposition, Flame Propagation, and Combustion Reactions Behaviours of Stearic Acid by Experiments and Molecular Dynamic Simulation , 2023, SSRN Electronic Journal.

[2]  Jianzhong Liu,et al.  Ignition and Combustion of Metal Fuels under Microgravity: A Short Review , 2022, FirePhysChem.

[3]  Fenggang Zhao,et al.  Effect of spherical Al-Mg-Zr on the combustion characteristics of composite propellants , 2022, FirePhysChem.

[4]  Kai Zhong,et al.  Atomic insight into the thermobaric effect of aluminized explosives , 2021, FirePhysChem.

[5]  Xiaogang Liu,et al.  Effect of Metal Nanopowders on the Performance of Solid Rocket Propellants: A Review , 2021, Nanomaterials.

[6]  Weiguo Cao,et al.  ReaxFF molecular dynamics simulations of n-eicosane reaction mechanisms during pyrolysis and combustion , 2021, International Journal of Hydrogen Energy.

[7]  X. Ju,et al.  Atomic perspective revealing for combustion evolution of nitromethane/nano-aluminum hydride composite. , 2021, Journal of molecular graphics & modelling.

[8]  Min Zhu,et al.  AlH3 as a hydrogen storage material: recent advances, prospects and challenges , 2021, Rare Metals.

[9]  Gen Tang,et al.  Synthesis and Stability of Hydrogen Storage Material Aluminum Hydride , 2021, Materials.

[10]  C. Shu,et al.  Explosion venting hazards of temperature effects and pressure characteristics for premixed hydrogen-air mixtures in a spherical container , 2021 .

[11]  V. B. Storozhev,et al.  Effect on combustion of oxide coating formed on aluminum nanoparticles burned in steam , 2021 .

[12]  Que Huang,et al.  Pressure release characteristics of premixed hydrogen-air mixtures in an explosion venting device with a duct , 2021 .

[13]  Jianzhong Liu,et al.  Thermal oxidation and heterogeneous combustion of AlH3 and Al: A comparative study , 2021 .

[14]  Xinhua Wang,et al.  Aluminum hydride for solid-state hydrogen storage: Structure, synthesis, thermodynamics, kinetics, and regeneration , 2021, Journal of Energy Chemistry.

[15]  S. Biswas,et al.  Effect of metal additives on neutralization and characteristics of AP/HTPB solid propellants , 2020 .

[16]  K. Luo,et al.  A molecular dynamics study on oxidation of aluminum hydride (AlH3)/hydroxyl-terminated polybutadiene (HTPB) solid fuel , 2020, Proceedings of the Combustion Institute.

[17]  X. Ju,et al.  Thermal Decomposition Mechanism of 1,3,5,7-Tetranitro-1,3,5,7-tetrazocane Accelerated by Nano-Aluminum Hydride (AlH3): ReaxFF-Lg Molecular Dynamics Simulation , 2020, ACS omega.

[18]  P. Alegaonkar,et al.  Thermo-physical Properties and Combustion Wave Aspects of RDX Contain Low Aluminium Composite Propellant , 2020 .

[19]  Weiguo Cao,et al.  Hazard evaluation of ignition sensitivity and explosion severity for three typical MH2 (M= Mg, Ti, Zr) of energetic materials , 2020 .

[20]  Xian-xu Zheng,et al.  Effect of Aluminum Particle Size on the Performance of Aluminized Explosives , 2020 .

[21]  K. Luo,et al.  Fundamental Study on Mechanisms of Thermal Decomposition and Oxidation of Aluminum Hydride , 2019, The Journal of Physical Chemistry C.

[22]  X. Ju,et al.  Reactive molecular dynamics simulation of thermal decomposition for nano-AlH3/TNT and nano-AlH3/CL-20 composites , 2019, Journal of Materials Science.

[23]  L. DeLuca Overview of Al-based nanoenergetic ingredients for solid rocket propulsion , 2018, Defence Technology.

[24]  X. Ju,et al.  Molecular dynamic simulation for thermal decomposition of RDX with nano-AlH3 particles. , 2018, Physical chemistry chemical physics : PCCP.

[25]  M. Yan,et al.  Hydrogen desorption behaviors of γ-AlH3: Diverse decomposition mechanisms for the outer layer and the inner part of γ-AlH3 particle , 2017 .

[26]  Xingqing Yan,et al.  Dust explosion venting of small vessels at the elevated static activation overpressure , 2014 .

[27]  N. Yan,et al.  Effects of Different Nano‐Metric Particles on the Properties of Composite Solid Propellants , 2014 .

[28]  N. Eisenreich,et al.  On the kinetics of AlH3 decomposition and the subsequent Al oxidation , 2014 .

[29]  C. Jensen,et al.  NMR spectroscopic and thermodynamic studies of the etherate and the α, α′, and γ phases of AlH3 , 2013 .

[30]  N. Yen,et al.  Reactive Metals in Explosives , 2012 .

[31]  S. Saxena,et al.  High-Pressure Raman and X-ray Diffraction Study of β- and γ-Polymorphs of Aluminum Hydride , 2012 .

[32]  J. Graetz,et al.  Kinetics and thermodynamics of the aluminum hydride polymorphs , 2007 .

[33]  J. Graetz,et al.  Thermodynamics of the a , and ? polymorphs of AlH 3 , 2006 .

[34]  Jason Graetz,et al.  Decomposition kinetics of the AlH3 polymorphs. , 2005, The journal of physical chemistry. B.

[35]  Yun Zhang,et al.  Combustion Characteristics of Three Linear Monohydric Alcohols Ch3(Ch2)N-1oh (N = 16, 18, 22): Combined Ignition Experiments and Molecular Dynamics Simulations , 2022, SSRN Electronic Journal.

[36]  R. Shen,et al.  An excellent synergy between CL-20 and nanothermites in flaming and propelling with high specific impulse and superior safety to electrostatic discharge , 2022, Combustion and Flame.

[37]  Bo Xu,et al.  Preparation and thermal properties of aluminum hydride polymorphs , 2014 .

[38]  I-Shih Chang,et al.  Solid propulsion for space applications: An updated roadmap , 2010 .

[39]  L. Meda,et al.  Pre and Post-Burning Analysis of Nano-Aluminized Solid Rocket Propellants , 2005 .

[40]  Luigi T. DeLuca,et al.  Physical and ballistic characterization of AlH3-based space propellants , 2005 .

[41]  H. Krier,et al.  Combustion Characteristics of Aluminum Hydride at Elevated Pressure and Temperature , 2004 .