Biomaterial systems for mechanosensing and actuation

[1]  L. Mahadevan,et al.  Hygromorphs: from pine cones to biomimetic bilayers , 2009, Journal of The Royal Society Interface.

[2]  George M Whitesides,et al.  Soft nanotechnology: "structure" vs. "function". , 2009, Faraday discussions.

[3]  J. F. Stoddart,et al.  Molecular, Supramolecular, and Macromolecular Motors and Artificial Muscles , 2009 .

[4]  Kyle D. Anderson,et al.  Bioinspired Material Approaches to Sensing , 2009 .

[5]  F. Barth,et al.  Surface force spectroscopic point load measurements and viscoelastic modelling of the micromechanical properties of air flow sensitive hairs of a spider (Cupiennius salei) , 2009, Journal of The Royal Society Interface.

[6]  Petra Schwille,et al.  Synthetic biology of minimal systems , 2009, Critical reviews in biochemistry and molecular biology.

[7]  G Jeronimidis,et al.  Recent advances in biomimetic sensing technologies , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[8]  I. Burgert,et al.  Actuation systems in plants as prototypes for bioinspired devices , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[9]  Joanna Aizenberg,et al.  Biological and Biomimetic Materials , 2009 .

[10]  L. Mahadevan,et al.  Self-Organization of a Mesoscale Bristle into Ordered, Hierarchical Helical Assemblies , 2009, Science.

[11]  R. Ritchie,et al.  Tough, Bio-Inspired Hybrid Materials , 2008, Science.

[12]  George Jeronimidis,et al.  Stress generation in the tension wood of poplar is based on the lateral swelling power of the G-layer. , 2008, The Plant journal : for cell and molecular biology.

[13]  S. Gorb,et al.  Structures in the cell wall that enable hygroscopic movement of wheat awns. , 2008, Journal of structural biology.

[14]  T. Wheeler,et al.  The transpiration of water at negative pressures in a synthetic tree , 2008, Nature.

[15]  Peter Fratzl,et al.  Cellulose fibrils direct plant organ movements. , 2008, Faraday discussions.

[16]  L. Mahadevan,et al.  Botanical ratchets , 2008, Proceedings of the Royal Society B: Biological Sciences.

[17]  Sybrand van der Zwaag,et al.  Self-Healing Materials , 2008 .

[18]  P. Messersmith,et al.  Multitasking in Tissues and Materials , 2008, Science.

[19]  Dick Broer,et al.  Artificial cilia for active micro-fluidic mixing. , 2008, Lab on a chip.

[20]  D. Tyler,et al.  Stimuli-Responsive Polymer Nanocomposites Inspired by the Sea Cucumber Dermis , 2008, Science.

[21]  Ludwig J. Gauckler,et al.  Bioinspired Design and Assembly of Platelet Reinforced Polymer Films , 2008, Science.

[22]  George Jeronimidis,et al.  Mapping fibre orientation in complex-shaped biological systems with micrometre resolution by scanning X-ray microdiffraction. , 2008, Micron.

[23]  Richard Vaia,et al.  Adaptive Composites , 2008, Science.

[24]  Vladimir V Tsukruk,et al.  Viscoelastic nanoscale properties of cuticle contribute to the high-pass properties of spider vibration receptor (Cupiennius salei Keys) , 2007, Journal of The Royal Society Interface.

[25]  Bradley J. Nelson,et al.  Carbon nanotubes for nanorobotics , 2007 .

[26]  Richard Weinkamer,et al.  Nature’s hierarchical materials , 2007 .

[27]  J. Engel,et al.  Design and Characterization of Artificial Haircell Sensor for Flow Sensing With Ultrahigh Velocity and Angular Sensitivity , 2007, Journal of Microelectromechanical Systems.

[28]  Peter Fratzl,et al.  Biomimetic materials research: what can we really learn from nature's structural materials? , 2007, Journal of The Royal Society Interface.

[29]  Peter Fratzl,et al.  Tensile and compressive stresses in tracheids are induced by swelling based on geometrical constraints of the wood cell , 2007, Planta.

[30]  R. Elbaum,et al.  The Role of Wheat Awns in the Seed Dispersal Unit , 2007, Science.

[31]  R Lloyd Carroll,et al.  Magnetically actuated nanorod arrays as biomimetic cilia. , 2007, Nano letters.

[32]  J. Aizenberg,et al.  Reversible Switching of Hydrogel-Actuated Nanostructures into Complex Micropatterns , 2007, Science.

[33]  Marcel Dijkstra,et al.  MEMS based hair flow-sensors as model systems for acoustic perception studies , 2006, Nanotechnology.

[34]  Gijsbertus J.M. Krijnen,et al.  Institute of Physics Publishing Journal of Micromechanics and Microengineering Artificial Sensory Hairs Based on the Flow Sensitive Receptor Hairs of Crickets , 2022 .

[35]  L. Mahadevan,et al.  Physical Limits and Design Principles for Plant and Fungal Movements , 2005, Science.

[36]  L. Mahadevan,et al.  How the Venus flytrap snaps , 2005, Nature.

[37]  F. Delcomyn,et al.  Design and fabrication of artificial lateral line flow sensors , 2002 .

[38]  J. Gosline,et al.  Elastic proteins: biological roles and mechanical properties. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[39]  F. Barth,et al.  A Spider’s World: Senses and Behavior , 2001 .

[40]  A. Reiterer,et al.  Cellulose microfibril angles in a spruce branch and mechanical implications , 2001 .

[41]  F. Barth,et al.  Arthropod touch reception: spider hair sensilla as rapid touch detectors , 2001, Journal of Comparative Physiology A.

[42]  F. Barth,et al.  Arthropod touch reception: stimulus transformation and finite element model of spider tactile hairs , 2001, Journal of Comparative Physiology A.

[43]  John W. Suh,et al.  CMOS integrated ciliary actuator array as a general-purpose micromanipulation tool for small objects , 1999 .

[44]  Friedrich G. Barth,et al.  Dynamics of arthropod filiform hairs. V. The response of spider trichobothria to natural stimuli , 1999 .

[45]  C. Dawson,et al.  How pine cones open , 1997, Nature.

[46]  T. Friedel,et al.  Wind-sensitive interneurones in the spider CNS (Cupiennius salei ): directional information processing of sensory inputs from trichobothria on the walking legs , 1997, Journal of Comparative Physiology A.

[47]  Friedrich G. Barth,et al.  Dynamics of Arthropod Filiform Hairs. III. Flow Patterns Related to Air Movement Detection in a Spider (Cupiennius salei KEYS.) , 1995 .

[48]  Friedrich G. Barth,et al.  Dynamics of arthropod filiform hairs. II. Mechanical properties of spider trichobothria ( Cupiennius salei Keys.) , 1993 .

[49]  Friedrich G. Barth,et al.  Spiders of the genus Cupiennius Simon 1891 (Araneae, Ctenidae) , 1988, Oecologia.

[50]  Friedrich G. Barth,et al.  Spiders of the genus Cupiennius Simon 1891 (Araneae, Ctenidae) , 1988, Oecologia.

[51]  Dr. Anthony C. Neville Biology of the Arthropod Cuticle , 1975, Zoophysiology and Ecology.

[52]  F. Barth Microfiber reinforcement of an arthropod cuticle , 1973, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[53]  A. Hill The mechanics of active muscle , 1953, Proceedings of the Royal Society of London. Series B - Biological Sciences.

[54]  S. V. D. Zwaag Self healing materials : an alternative approach to 20 centuries of materials science , 2007 .

[55]  F. Barth,et al.  Finite element modeling of arachnid slit sensilla—I. The mechanical significance of different slit arrays , 2007, Journal of Comparative Physiology A.

[56]  F. Barth,et al.  Studying the deformation of arachnid slit sensilla by a fracture mechanical approach. , 2006, Journal of biomechanics.

[57]  Horst Bleckmann,et al.  The Lateral Line System of Fish , 2006 .

[58]  Friedrich G. Barth,et al.  The Physics of Arthropod Medium-Flow Sensitive Hairs: Biological Models for Artificial Sensors , 2003 .

[59]  Tateo Shimozawa,et al.  Cricket Wind Receptors: Thermal Noise for the Highest Sensitivity Known , 2003 .

[60]  Professor Dr. Friedrich G. Barth A Spider’s World , 2002, Springer Berlin Heidelberg.

[61]  Leslie H. Sperling,et al.  Polymeric Multicomponent Materials: An Introduction , 1997 .

[62]  F. G. Barth,et al.  Vibratory communication in spiders: Adaptation and compromise at many levels , 1997 .

[63]  M. Lehrer Orientation and Communication in Arthropods , 1997, EXS.

[64]  R W Gülch,et al.  Force-Velocity Relations in Human Skeletal Muscle , 1994, International journal of sports medicine.

[65]  C. Pennycuick,et al.  Newton rules biology. A physical approach to biological problems , 1992 .

[66]  W. Haupt Bewegungsphysiologie der Pflanzen , 1977 .

[67]  Philips Research,et al.  Self-healing Materials , 2022 .