Matrix Multilevel Methods and Preconditioning

The Matrix Multilevel approach is based on a purely matrix dependent description of multigrid methods. The formulation of multilevel methods as singular matrix extensions via generating systems leads to the description of the method as a preconditioned iterative scheme, and illuminates the significance of the used prolongation and restriction operator for the related preconditioner. We define the matrix dependent black box restriction C by shifting the original matrix A in the form B = αI − A and picking out every second column to C = B(:, 2 : 2 : n). Here, α has to be chosen as a rough upper estimate of the largest eigenvalue of A. By this mapping the related preconditioner enlarges the small eigenvalues while the maximum eigenvalue remains nearly unchanged. Although we derive our method in an additive setting, we can also use the new prolongations/restrictions in multiplicative algorithms. Our test results are very promising: We give various numerical examples where multigrid with standard prolongation/restriction deteriorates whereas the new method shows optimal behaviour. We also notice that in many cases using B = abs(A) instead of B = αI − A gives equally good results. We mainly consider symmetric positive definite matrices in one and two dimensions, but the results can be generalized to higher dimensional problems.

[1]  Anne Greenbaum,et al.  Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.

[2]  J. W. Ruge,et al.  4. Algebraic Multigrid , 1987 .

[3]  Wolfgang Becker,et al.  Dynamische adaptive Lastbalancierung für große, heterogen konkurrierende Anwendungen , 1995 .

[4]  Kristian Paul Bubendorfer Resource Based Policies for Load Distribution , 1996 .

[5]  Miron Livny,et al.  A worldwide flock of Condors: Load sharing among workstation clusters , 1996, Future Gener. Comput. Syst..

[6]  Peter Baumgartner,et al.  PROTEIN: A PROver with a Theory Extension INterface , 1994, CADE.

[7]  J. Pasciak,et al.  Parallel multilevel preconditioners , 1990 .

[8]  Geoffrey C. Fox,et al.  A Review of Commercial and Research Cluster Management Software , 1996 .

[9]  Mor Harchol-Balter,et al.  Exploiting process lifetime distributions for dynamic load balancing , 1995, SIGMETRICS.

[10]  Michael Griebel,et al.  Multilevelmethoden als Iterationsverfahren über Erzeugendensystemen , 1994 .

[11]  Michael Griebel,et al.  Multilevel Algorithms Considered as Iterative Methods on Semidefinite Systems , 1994, SIAM J. Sci. Comput..

[12]  Stefano Serra,et al.  Multigrid methods for toeplitz matrices , 1991 .

[13]  Anne Greenbaum,et al.  Analysis of a Multigrid Method as an Iterative Technique for Solving Linear Systems , 1984 .

[14]  Georg Stellner,et al.  Dynamic Load Distribution for Parallel Applications , 1997 .

[15]  Pankaj Mehra,et al.  Automated learning of load-balancing strategies for a distributed computer system , 1993 .

[16]  Volker Mehrmann,et al.  Minimizing the condition number of a positive definite matrix by completion , 1994 .

[17]  William McCune Otter 2.0 , 1990, CADE.

[18]  William L. Briggs,et al.  A multigrid tutorial , 1987 .

[19]  Wolfgang Reif,et al.  The KIV System: Systematic Construction of Verified Software , 1992, CADE.

[20]  Matthias Fuchs,et al.  DISCOUNT: A SYstem for Distributed Equational Deduction , 1995, RTA.

[21]  Brian K. Schmidt,et al.  Empirical analysis of overheads in cluster environments , 1994, Concurr. Pract. Exp..

[22]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[23]  Ingo Dahn,et al.  A Calculus Supporting Structured Proofs , 1994, J. Inf. Process. Cybern..

[24]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[25]  P. Oswald,et al.  Remarks on the Abstract Theory of Additive and Multiplicative Schwarz Algorithms , 1995 .

[26]  Bettina Schnor,et al.  Scheduling of Parallel Applications on Heterogeneous Workstation Clusters , 1996 .

[27]  Michael Griebel,et al.  Zur Lösung von Finite-Differenzen-und Finite-Element-Gleichungen mittels der Hierarchischen-Transformations-Mehrgitter-Methode - Sonderforschungsbericht 342: Methoden und Werkzeuge für die Nutzung paralleler Rechnerarchitekturen , 1990, TUM-I.

[28]  Sascha Dierkes Load Balancing with a Fuzzy-Decision Algorithm , 1997, Inf. Sci..

[29]  Ravishankar K. Iyer,et al.  Prediction-Based Dynamic Load-Sharing Heuristics , 1993, IEEE Trans. Parallel Distributed Syst..

[30]  Andreas Wolf,et al.  Integrating Logical Functions with ILF , 1994 .

[31]  H. Yserentant Old and new convergence proofs for multigrid methods , 1993, Acta Numerica.

[32]  Raymond H. Chan,et al.  Multigrid Method for Ill-Conditioned Symmetric Toeplitz Systems , 1998, SIAM J. Sci. Comput..

[33]  Ravishankar K. Iyer,et al.  Predictability of Process Resource Usage: A Measurement-Based Study on UNIX , 1989, IEEE Trans. Software Eng..

[34]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[35]  Andreas Wolf,et al.  DBFW: a simple database framework for the evaluation and maintenance of automated theorem prover data , 1998, Proceedings of the Second Euromicro Conference on Software Maintenance and Reengineering.

[36]  Ingo Dahn,et al.  Integration of Automated and Interactive Theorem Proving in ILP , 1997, CADE.