The Vienna RNA Websuite

The Vienna RNA Websuite is a comprehensive collection of tools for folding, design and analysis of RNA sequences. It provides a web interface to the most commonly used programs of the Vienna RNA package. Among them, we find folding of single and aligned sequences, prediction of RNA–RNA interactions, and design of sequences with a given structure. Additionally, we provide analysis of folding landscapes using the barriers program and structural RNA alignments using LocARNA. The web server together with software packages for download is freely accessible at http://rna.tbi.univie.ac.at/.

[1]  Peter F. Stadler,et al.  Partition function and base pairing probabilities of RNA heterodimers , 2006, Algorithms for Molecular Biology.

[2]  Michael Zuker,et al.  Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information , 1981, Nucleic Acids Res..

[3]  Matthew R. Pocock,et al.  The Bioperl toolkit: Perl modules for the life sciences. , 2002, Genome research.

[4]  Kevin P. Murphy,et al.  Efficient parameter estimation for RNA secondary structure prediction , 2007, ISMB/ECCB.

[5]  Robert Giegerich,et al.  RNA Movies: Visualizing RNA secondary structure spaces , 1997, German Conference on Bioinformatics.

[6]  Rolf Backofen,et al.  Inferring Noncoding RNA Families and Classes by Means of Genome-Scale Structure-Based Clustering , 2007, PLoS Comput. Biol..

[7]  Michael T. Wolfinger,et al.  Efficient computation of RNA folding dynamics , 2004 .

[8]  Sean R. Eddy,et al.  RSEARCH: Finding homologs of single structured RNA sequences , 2003, BMC Bioinformatics.

[9]  J. McCaskill The equilibrium partition function and base pair binding probabilities for RNA secondary structure , 1990, Biopolymers.

[10]  D. Sankoff Simultaneous Solution of the RNA Folding, Alignment and Protosequence Problems , 1985 .

[11]  P. Stadler,et al.  Secondary structure prediction for aligned RNA sequences. , 2002, Journal of molecular biology.

[12]  J. Sabina,et al.  Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. , 1999, Journal of molecular biology.

[13]  Michael T. Wolfinger,et al.  Barrier Trees of Degenerate Landscapes , 2002 .

[14]  Walter Fontana,et al.  Fast folding and comparison of RNA secondary structures , 1994 .

[15]  Peter F. Stadler,et al.  Translational Control by RNA-RNA Interaction: Improved Computation of RNA-RNA Binding Thermodynamics , 2008, BIRD.

[16]  M. Zuker Computer prediction of RNA structure. , 1989, Methods in Enzymology.

[17]  Peter F. Stadler,et al.  Thermodynamics of RNA-RNA Binding , 2006, German Conference on Bioinformatics.

[18]  C. Lawrence,et al.  RNA secondary structure prediction by centroids in a Boltzmann weighted ensemble. , 2005, RNA.

[19]  Rolf Backofen,et al.  Variations on RNA folding and alignment: lessons from Benasque , 2007, Journal of mathematical biology.

[20]  J. SantaLucia,et al.  A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Ivo L. Hofacker,et al.  Vienna RNA secondary structure server , 2003, Nucleic Acids Res..

[22]  Peter F. Stadler,et al.  Memory Efficient Folding Algorithms for Circular RNA Secondary Structures , 2006, German Conference on Bioinformatics.