A Multipole Method for Schwarz-Christoffel Mapping of Polygons with Thousands of Sides
暂无分享,去创建一个
[1] Royal Davis. Numerical methods for coordinate generation based on Schwarz-Christoffel transformations , 1979 .
[2] John A. Board,et al. Fast Fourier Transform Accelerated Fast Multipole Algorithm , 1996, SIAM J. Sci. Comput..
[3] Arnold Schönhage,et al. Fast algorithms for multiple evaluations of the riemann zeta function , 1988 .
[4] Tobin A. Driscoll,et al. Numerical Conformal Mapping Using Cross-Ratios and Delaunay Triangulation , 1998, SIAM J. Sci. Comput..
[5] L. Greengard,et al. Regular Article: A Fast Adaptive Multipole Algorithm in Three Dimensions , 1999 .
[6] Henry C. Thacher,et al. Applied and Computational Complex Analysis. , 1988 .
[7] Jerzy M. Floryan,et al. Schwarz-Christoffel mappings: A general approach , 1987 .
[8] Jerzy M. Floryan,et al. Schwarz-Christoffel methods for conformal mapping of regions with a periodic boundary , 1993 .
[9] Vladimir Rokhlin,et al. A Fast Algorithm for the Numerical Evaluation of Conformal Mappings , 1989 .
[10] V. Rokhlin. Rapid solution of integral equations of classical potential theory , 1985 .
[11] Tobin A. Driscoll,et al. Algorithm 756: a MATLAB toolbox for Schwarz-Christoffel mapping , 1996, TOMS.
[12] K. J. Binns,et al. Analysis and computation of electric and magnetic field problems , 1973 .
[13] Peter Henrici,et al. Discrete Fourier analysis, Cauchy integrals, construction of conformal maps, univalent functions , 1986 .
[14] Manfred R. Trummer,et al. Numerical conformal mapping via the Szego¨ Kernel , 1986 .
[15] E. Costamagna. On the Numerical Inversion of the Schwarz-Christoffel Conformal Transformation , 1987 .
[16] A DriscollTobin. Algorithm 756: a MATLAB toolbox for Schwarz-Christoffel mapping , 1996 .
[17] Vladimir Rokhlin,et al. An Improved Fast Multipole Algorithm for Potential Fields , 1998, SIAM J. Sci. Comput..
[18] L. Greengard. The Rapid Evaluation of Potential Fields in Particle Systems , 1988 .
[19] L. Greengard,et al. A new version of the Fast Multipole Method for the Laplace equation in three dimensions , 1997, Acta Numerica.
[20] J. CARRIERt,et al. A FAST ADAPTIVE MULTIPOLE ALGORITHM FOR PARTICLE SIMULATIONS * , 2022 .
[21] Herbert B. Keller,et al. Calculations of the Conductivity of a Medium Containing Cylindrical Inclusions , 1964 .
[22] C. Sparrow. The Fractal Geometry of Nature , 1984 .
[23] Manfred R. Trummer,et al. An efficient implementation of a conformal mapping method based on the Szego¨ kernel , 1986 .
[24] Lloyd N. Trefethen,et al. Schwarz-Christoffel Mapping , 2002 .
[25] Leslie Greengard,et al. A fast algorithm for particle simulations , 1987 .
[26] L Greengard,et al. On the Efficient Implementation of the Fast Multipole Algorithm. , 1988 .
[27] C. Leonard Berman. Grid-Multipole Calculations , 1995, SIAM J. Sci. Comput..
[28] L. Trefethen. Numerical computation of the Schwarz-Christoffel transformation , 1979 .
[29] Michel L. Lapidus,et al. SNOWFLAKE HARMONICS AND COMPUTER GRAPHICS: NUMERICAL COMPUTATION OF SPECTRA ON FRACTAL DRUMS , 1996 .
[30] Petter E. Bjørstad,et al. Conformal mapping of circular arc polygons , 1987 .