A Multipole Method for Schwarz-Christoffel Mapping of Polygons with Thousands of Sides

A method is presented for the computation of Schwarz--Christoffel maps to polygons with tens of thousands of vertices. Previously published algorithms have CPU time estimates of the order O(N3) for the computation of a conformal map of a polygon with N vertices. This has been reduced to O(N log N) by the use of the fast multipole method and Davis's method for solving the parameter problem. The method is illustrated by a number of examples, the largest of which has $N \approx 2 \times 10^5$.

[1]  Royal Davis Numerical methods for coordinate generation based on Schwarz-Christoffel transformations , 1979 .

[2]  John A. Board,et al.  Fast Fourier Transform Accelerated Fast Multipole Algorithm , 1996, SIAM J. Sci. Comput..

[3]  Arnold Schönhage,et al.  Fast algorithms for multiple evaluations of the riemann zeta function , 1988 .

[4]  Tobin A. Driscoll,et al.  Numerical Conformal Mapping Using Cross-Ratios and Delaunay Triangulation , 1998, SIAM J. Sci. Comput..

[5]  L. Greengard,et al.  Regular Article: A Fast Adaptive Multipole Algorithm in Three Dimensions , 1999 .

[6]  Henry C. Thacher,et al.  Applied and Computational Complex Analysis. , 1988 .

[7]  Jerzy M. Floryan,et al.  Schwarz-Christoffel mappings: A general approach , 1987 .

[8]  Jerzy M. Floryan,et al.  Schwarz-Christoffel methods for conformal mapping of regions with a periodic boundary , 1993 .

[9]  Vladimir Rokhlin,et al.  A Fast Algorithm for the Numerical Evaluation of Conformal Mappings , 1989 .

[10]  V. Rokhlin Rapid solution of integral equations of classical potential theory , 1985 .

[11]  Tobin A. Driscoll,et al.  Algorithm 756: a MATLAB toolbox for Schwarz-Christoffel mapping , 1996, TOMS.

[12]  K. J. Binns,et al.  Analysis and computation of electric and magnetic field problems , 1973 .

[13]  Peter Henrici,et al.  Discrete Fourier analysis, Cauchy integrals, construction of conformal maps, univalent functions , 1986 .

[14]  Manfred R. Trummer,et al.  Numerical conformal mapping via the Szego¨ Kernel , 1986 .

[15]  E. Costamagna On the Numerical Inversion of the Schwarz-Christoffel Conformal Transformation , 1987 .

[16]  A DriscollTobin Algorithm 756: a MATLAB toolbox for Schwarz-Christoffel mapping , 1996 .

[17]  Vladimir Rokhlin,et al.  An Improved Fast Multipole Algorithm for Potential Fields , 1998, SIAM J. Sci. Comput..

[18]  L. Greengard The Rapid Evaluation of Potential Fields in Particle Systems , 1988 .

[19]  L. Greengard,et al.  A new version of the Fast Multipole Method for the Laplace equation in three dimensions , 1997, Acta Numerica.

[20]  J. CARRIERt,et al.  A FAST ADAPTIVE MULTIPOLE ALGORITHM FOR PARTICLE SIMULATIONS * , 2022 .

[21]  Herbert B. Keller,et al.  Calculations of the Conductivity of a Medium Containing Cylindrical Inclusions , 1964 .

[22]  C. Sparrow The Fractal Geometry of Nature , 1984 .

[23]  Manfred R. Trummer,et al.  An efficient implementation of a conformal mapping method based on the Szego¨ kernel , 1986 .

[24]  Lloyd N. Trefethen,et al.  Schwarz-Christoffel Mapping , 2002 .

[25]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[26]  L Greengard,et al.  On the Efficient Implementation of the Fast Multipole Algorithm. , 1988 .

[27]  C. Leonard Berman Grid-Multipole Calculations , 1995, SIAM J. Sci. Comput..

[28]  L. Trefethen Numerical computation of the Schwarz-Christoffel transformation , 1979 .

[29]  Michel L. Lapidus,et al.  SNOWFLAKE HARMONICS AND COMPUTER GRAPHICS: NUMERICAL COMPUTATION OF SPECTRA ON FRACTAL DRUMS , 1996 .

[30]  Petter E. Bjørstad,et al.  Conformal mapping of circular arc polygons , 1987 .