Highly transparent ZnO bilayers by LP-MOCVD as front electrodes for thin-film micromorph silicon solar cells

[1]  H2-Dilution vs. Buffer Layers for Increased Voc , 1996 .

[2]  A Porch,et al.  Basic materials physics of transparent conducting oxides. , 2004, Dalton transactions.

[3]  J. Seto The electrical properties of polycrystalline silicon films , 1975 .

[4]  C. Ballif,et al.  Growth Model of MOCVD Polycrystalline ZnO , 2009 .

[5]  W. W. Wenas,et al.  Electrical and optical properties of boron‐doped ZnO thin films for solar cells grown by metalorganic chemical vapor deposition , 1991 .

[6]  Johannes Meier,et al.  High-Efficiency Amorphous Silicon Devices on LPCVD-ZnO TCO Prepared in Industrial KAI TM-M R&D Reactor , 2009 .

[7]  M. Zeman,et al.  Optical modelling of thin-film silicon solar cells deposited on textured substrates , 2004 .

[8]  J. Meier,et al.  Recent Developments of High Efficiency Micromorph tandem solar cells in KAI-M PECVD reactors , 2010 .

[9]  C. Ballif,et al.  Transition between grain boundary and intragrain scattering transport mechanisms in boron-doped zinc oxide thin films , 2007 .

[10]  C. Ballif,et al.  Polycrystalline ZnO: B grown by LPCVD as TCO for thin film silicon solar cells , 2010 .

[11]  T. Moriarty,et al.  Potential of amorphous and microcrystalline silicon solar cells , 2004 .

[12]  A. Feltrin,et al.  Material considerations for terawatt level deployment of photovoltaics , 2008 .

[13]  Christophe Ballif,et al.  Opto-electronic properties of rough LP-CVD ZnO:B for use as TCO in thin-film silicon solar cells , 2007 .

[14]  G. Masetti,et al.  Modeling of carrier mobility against carrier concentration in arsenic-, phosphorus-, and boron-doped silicon , 1983, IEEE Transactions on Electron Devices.

[15]  K. Ellmer,et al.  Carrier transport in polycrystalline transparent conductive oxides: A comparative study of zinc oxide and indium oxide , 2008 .

[16]  P. Buehlmann,et al.  In situ silicon oxide based intermediate reflector for thin-film silicon micromorph solar cells , 2007 .

[17]  M. Addonizio,et al.  Doping influence on intrinsic stress and carrier mobility of LP-MOCVD-deposited ZnO:B thin films , 2008 .

[18]  J. J. Hanak Monolithic solar cell panel of amorphous silicon , 1979 .

[19]  E. Bugiel,et al.  Boron surfactant enhanced growth of thin Si films on CaF2∕Si , 2004 .

[20]  Martin A. Green,et al.  Consolidation of thin‐film photovoltaic technology: the coming decade of opportunity , 2006 .

[21]  Arvind Shah,et al.  Low pressure chemical vapour deposition of ZnO layers for thin-film solar cells: temperature-induced morphological changes , 2005 .

[22]  D. Staebler,et al.  Reversible conductivity changes in discharge‐produced amorphous Si , 1977 .

[23]  Arvind Shah,et al.  Rough ZnO Layers by LP-CVD Process and their Effect in Improving Performances of Amorphous and Microcrystalline Silicon Solar Cells , 2006 .

[24]  A. Aberle Thin-film solar cells , 2009 .

[25]  C. Battaglia,et al.  Optimization of thin film silicon solar cells on highly textured substrates , 2011 .

[26]  M. Stutzmann 1961–2011: Celebrating the 50th Anniversary of physica status solidi ! , 2011 .

[27]  N. Wyrsch,et al.  Substrate dependent stability and interplay between optical and electrical properties in μc-Si:H single junction solar cells , 2011 .

[28]  K. Chopra,et al.  Transparent conductors—A status review , 1983 .

[29]  C. Ballif,et al.  Growth of LPCVD ZnO Bilayers for Solar Cell Front Electrodes , 2010 .

[30]  Arvind Shah,et al.  Relation between substrate surface morphology and microcrystalline silicon solar cell performance , 2008 .

[31]  A. Shah,et al.  High-Efficiency P-I-N Microcrystalline and Micromorph Thin Film Silicon Solar Cells Deposited on LPCVD Zno Coated Glass Substrates , 2006, 2006 IEEE 4th World Conference on Photovoltaic Energy Conference.