Non-orthogonal transmission technology in LTE evolution

Non-orthogonal transmission, although not entirely new to the wireless industry, is gaining more attention due to its promised throughput gain and unique capability to support a large number of simultaneous transmissions within limited resources. In this article, several key techniques for non-orthogonal transmission are discussed. The downlink technique is featured by MUST, which is being specified in 3GPP for mobile broadband services. In the uplink, grantfree schemes such as multi-user shared access and sparse code multiple access, are promising in supporting massive machine-type communication services. The multi-antenna aspect is also addressed in the context of MUST, showing that MIMO technology and non-orthogonal transmission can be used jointly to provide combined gain.

[1]  Thomas M. Cover,et al.  Broadcast channels , 1972, IEEE Trans. Inf. Theory.

[2]  Brendan J. Frey,et al.  Factor graphs and the sum-product algorithm , 2001, IEEE Trans. Inf. Theory.

[3]  Reza Hoshyar,et al.  Novel Low-Density Signature for Synchronous CDMA Systems Over AWGN Channel , 2008, IEEE Transactions on Signal Processing.

[4]  Hosein Nikopour,et al.  Sparse code multiple access , 2013, 2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC).

[5]  X. Jin Factor graphs and the Sum-Product Algorithm , 2002 .