Virus-enabled silicon anode for lithium-ion batteries.

A novel three-dimensional Tobacco mosaic virus assembled silicon anode is reported. This electrode combines genetically modified virus templates for the production of high aspect ratio nanofeatured surfaces with electroless deposition to produce an integrated nickel current collector followed by physical vapor deposition of a silicon layer to form a high capacity silicon anode. This composite silicon anode produced high capacities (3300 mAh/g), excellent charge-discharge cycling stability (0.20% loss per cycle at 1C), and consistent rate capabilities (46.4% at 4C) between 0 and 1.5 V. The biological templated nanocomposite electrode architecture displays a nearly 10-fold increase in capacity over currently available graphite anodes with remarkable cycling stability.

[1]  Yi Cui,et al.  Structural and electrochemical study of the reaction of lithium with silicon nanowires , 2009 .

[2]  M. Whittingham,et al.  Anodes for lithium batteries: tin revisited , 2003 .

[3]  Prashant N. Kumta,et al.  Nanostructured hybrid silicon/carbon nanotube heterostructures: reversible high-capacity lithium-ion anodes. , 2010, ACS nano.

[4]  J. Tarascon,et al.  Si Electrodes for Li-Ion batteries- A new way to look at an old problem , 2008 .

[5]  Yun Jung Lee,et al.  Fabricating Genetically Engineered High-Power Lithium-Ion Batteries Using Multiple Virus Genes , 2009, Science.

[6]  Jing Li,et al.  An In Situ X-Ray Diffraction Study of the Reaction of Li with Crystalline Si , 2007 .

[7]  D. Janes,et al.  Deposition of platinum clusters on surface-modified Tobacco mosaic virus. , 2006, Journal of nanoscience and nanotechnology.

[8]  C. Ozkan,et al.  Digital memory device based on tobacco mosaic virus conjugated with nanoparticles , 2006, Nature nanotechnology.

[9]  R. Ghodssi,et al.  Biofabrication methods for the patterned assembly and synthesis of viral nanotemplates , 2010, Nanotechnology.

[10]  Stephen Mann,et al.  Organization of Metallic Nanoparticles Using Tobacco Mosaic Virus Templates , 2003 .

[11]  Yi Cui,et al.  Impedance Analysis of Silicon Nanowire Lithium Ion Battery Anodes , 2009 .

[12]  Wenjun Zhang,et al.  Silicon nanowires for rechargeable lithium-ion battery anodes , 2008 .

[13]  Zhen Zhou,et al.  Core double-shell Si@SiO2@C nanocomposites as anode materials for Li-ion batteries. , 2010, Chemical communications.

[14]  C. C. Ahn,et al.  Highly Reversible Lithium Storage in Nanostructured Silicon , 2003 .

[15]  P. Kofinas,et al.  Self-assembly of virus-structured high surface area nanomaterials and their application as battery electrodes. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[16]  T. D. Hatchard,et al.  In Situ XRD and Electrochemical Study of the Reaction of Lithium with Amorphous Silicon , 2004 .

[17]  E. Peled,et al.  Artificial solid-electrolyte interphase (SEI) for improved cycleability and safety of lithium–ion cells for EV applications , 2009 .

[18]  Michael T Harris,et al.  Improved metal cluster deposition on a genetically engineered tobacco mosaic virus template , 2005, Nanotechnology.

[19]  Jaephil Cho,et al.  A critical size of silicon nano-anodes for lithium rechargeable batteries. , 2010, Angewandte Chemie.

[20]  Robert Kostecki,et al.  In situ AFM studies of SEI formation at a Sn electrode , 2009 .

[21]  Stephen Mann,et al.  Tobacco Mosaic Virus Liquid Crystals as Templates for the Interior Design of Silica Mesophases and Nanoparticles , 2001 .

[22]  Mark N. Obrovac,et al.  Reversible Cycling of Crystalline Silicon Powder , 2007 .

[23]  Candace K. Chan,et al.  Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes. , 2009, Nano letters.

[24]  Yi Cui,et al.  Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries. , 2009, Nano letters.

[25]  Jaephil Cho,et al.  Superior lithium electroactive mesoporous Si@carbon core-shell nanowires for lithium battery anode material. , 2008, Nano letters.

[26]  Y. Chiang,et al.  Virus-Enabled Synthesis and Assembly of Nanowires for Lithium Ion Battery Electrodes , 2006, Science.

[27]  G. Stubbs,et al.  Inorganic–Organic Nanotube Composites from Template Mineralization of Tobacco Mosaic Virus , 1999 .

[28]  Martin Winter,et al.  Tin and tin-based intermetallics as new anode materials for lithium-ion cells , 2001 .

[29]  Robert A. Huggins,et al.  All‐Solid Lithium Electrodes with Mixed‐Conductor Matrix , 1981 .

[30]  Min Gyu Kim,et al.  Silicon nanotube battery anodes. , 2009, Nano letters.

[31]  M. Wagner,et al.  Electrolyte Decomposition Reactions on Tin- and Graphite-Based Anodes are Different , 2004 .

[32]  F. E. Little,et al.  Charge–discharge stability of graphite anodes for lithium-ion batteries , 2001 .

[33]  J. Tarascon,et al.  Chemical Reduction of SiCl4 for the Preparation of Silicon–Graphite Composites used as Negative Electrodes in Lithium-Ion Batteries , 2008 .

[34]  M. Shikida,et al.  Iop Publishing Journal of Micromechanics and Microengineering a Palmtop-sized Rotary-drive-type Biochemical Analysis System by Magnetic Bead Handling , 2008 .

[35]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[36]  E. Braun,et al.  DNA-Templated Carbon Nanotube Field-Effect Transistor , 2003, Science.

[37]  J. Shim,et al.  Formation of Si Nanocrystallites in Al-Added Amorphous Si Films by Electron Beam Irradiation , 2010 .

[38]  Chunsheng Wang,et al.  Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells , 2007 .