Complementary dynamics

We present a novel approach to enrich arbitrary rig animations with elastodynamic secondary effects. Unlike previous methods which pit rig displacements and physical forces as adversaries against each other, we advocate that physics should complement artists' intentions. We propose optimizing for elastodynamic displacements in the subspace orthogonal to displacements that can be created by the rig. This ensures that the additional dynamic motions do not undo the rig animation. The complementary space is high-dimensional, algebraically constructed without manual oversight, and capable of rich high-frequency dynamics. Unlike prior tracking methods, we do not require extra painted weights, segmentation into fixed and free regions or tracking clusters. Our method is agnostic to the physical model and plugs into non-linear FEM simulations, geometric as-rigid-as-possible energies, or mass-spring models. Our method does not require a particular type of rig and adds secondary effects to skeletal animations, cage-based deformations, wire deformers, motion capture data, and rigid-body simulations.

[1]  Jirí Zára,et al.  Geometric skinning with approximate dual quaternion blending , 2008, TOGS.

[2]  Jernej Barbic,et al.  Linear subspace design for real-time shape deformation , 2015, ACM Trans. Graph..

[3]  Mark Pauly,et al.  Projective dynamics , 2014, ACM Trans. Graph..

[4]  Theodore Kim,et al.  Anisotropic elasticity for inversion-safety and element rehabilitation , 2019, ACM Trans. Graph..

[5]  Mario Botsch,et al.  Projective Skinning , 2018, PACMCGIT.

[6]  Hongyi Xu,et al.  Pose-space subspace dynamics , 2016, ACM Trans. Graph..

[7]  Jernej Barbic,et al.  Real-time large-deformation substructuring , 2011, ACM Trans. Graph..

[8]  Yijing Li,et al.  Immersion of self-intersecting solids and surfaces , 2018, ACM Trans. Graph..

[9]  J. P. Lewis,et al.  Direct delta mush skinning and variants , 2019, ACM Trans. Graph..

[10]  Craig Schroeder,et al.  Optimization Integrator for Large Time Steps , 2014, IEEE Transactions on Visualization and Computer Graphics.

[11]  Theodore Kim,et al.  Stable Neo-Hookean Flesh Simulation , 2018, ACM Trans. Graph..

[12]  Jessica K. Hodgins,et al.  Real-time skeletal skinning with optimized centers of rotation , 2016, ACM Trans. Graph..

[13]  Eugene Fiume,et al.  Wires: a geometric deformation technique , 1998, SIGGRAPH.

[14]  GrossMarkus,et al.  Enriching Facial Blendshape Rigs with Physical Simulation , 2017 .

[15]  Mathieu Desbrun,et al.  Material-adapted refinable basis functions for elasticity simulation , 2019, ACM Trans. Graph..

[16]  Steve Capell,et al.  Interactive skeleton-driven dynamic deformations , 2002, ACM Trans. Graph..

[17]  Paul Debevec,et al.  A blendshape model that incorporates physical interaction , 2011, SA '11.

[18]  C. Karen Liu,et al.  Artist-directed dynamics for 2D animation , 2016, ACM Trans. Graph..

[19]  Leonard McMillan,et al.  Stable real-time deformations , 2002, SCA '02.

[20]  Hans-Peter Seidel,et al.  Animating deformable objects using sparse spacetime constraints , 2014, ACM Trans. Graph..

[21]  Hujun Bao,et al.  Numerical coarsening using discontinuous shape functions , 2018, ACM Trans. Graph..

[22]  François Faure,et al.  Multifarious hierarchies of mechanical models for artist assigned levels-of-detail , 2015, Symposium on Computer Animation.

[23]  Markus H. Gross,et al.  Rig-space physics , 2012, ACM Trans. Graph..

[24]  Olga Sorkine-Hornung,et al.  Fast automatic skinning transformations , 2012, ACM Trans. Graph..

[25]  Eitan Grinspun,et al.  Example-based elastic materials , 2011, ACM Trans. Graph..

[26]  Jing Li,et al.  FEPR: fast energy projection for real-time simulation of deformable objects , 2018, ACM Trans. Graph..

[27]  Markus H. Gross,et al.  Deformable objects alive! , 2012, ACM Trans. Graph..

[28]  Olga Sorkine-Hornung,et al.  Elasticity-inspired deformers for character articulation , 2012, ACM Trans. Graph..

[29]  Christoph von Tycowicz,et al.  Interactive spacetime control of deformable objects , 2012, ACM Trans. Graph..

[30]  Yaron Lipman,et al.  Accelerated quadratic proxy for geometric optimization , 2016, ACM Trans. Graph..

[31]  Jernej Barbic,et al.  FEM simulation of 3D deformable solids: a practitioner's guide to theory, discretization and model reduction , 2012, SIGGRAPH '12.

[32]  Andrew P. Witkin,et al.  Large steps in cloth simulation , 1998, SIGGRAPH.

[33]  Tiantian Liu,et al.  Quasi-newton methods for real-time simulation of hyperelastic materials , 2017, TOGS.

[34]  Jing Li,et al.  Fast simulation of deformable characters with articulated skeletons in projective dynamics , 2019, Symposium on Computer Animation.

[35]  Yijing Li,et al.  Enriching Triangle Mesh Animations with Physically Based Simulation , 2017, IEEE Transactions on Visualization and Computer Graphics.

[36]  Xin Tong,et al.  A scalable galerkin multigrid method for real-time simulation of deformable objects , 2019, ACM Trans. Graph..

[37]  Adam Finkelstein,et al.  Secondary Motion for Performed 2D Animation , 2017, UIST.

[38]  Doug L. James,et al.  Physics-Based Character Skinning Using Multidomain Subspace Deformations , 2011, IEEE Transactions on Visualization and Computer Graphics.

[39]  F. Thomas,et al.  The illusion of life : Disney animation , 1981 .

[40]  Dinesh K. Pai,et al.  Frame-based elastic models , 2011, TOGS.

[41]  Alexis Angelidis,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2007) Kinodynamic Skinning Using Volume-preserving Deformations , 2022 .

[42]  Eitan Grinspun,et al.  TRACKS: toward directable thin shells , 2007, ACM Trans. Graph..

[43]  Jernej Barbic,et al.  Real-Time subspace integration for St. Venant-Kirchhoff deformable models , 2005, ACM Trans. Graph..

[44]  P. Schröder,et al.  A simple geometric model for elastic deformations , 2010, SIGGRAPH 2010.

[45]  Bailin Deng,et al.  Anderson acceleration for geometry optimization and physics simulation , 2018, ACM Trans. Graph..

[46]  Yin Yang,et al.  Descent methods for elastic body simulation on the GPU , 2016, ACM Trans. Graph..

[47]  Derek Bradley,et al.  Enriching Facial Blendshape Rigs with Physical Simulation , 2017, Comput. Graph. Forum.

[48]  Peter Schröder,et al.  A simple geometric model for elastic deformations , 2010, ACM Trans. Graph..

[49]  Huamin Wang,et al.  Parallel Multigrid for Nonlinear Cloth Simulation , 2018, Comput. Graph. Forum.

[50]  Jovan Popovic,et al.  Inverse kinematics for reduced deformable models , 2006, SIGGRAPH '06.

[51]  Xin Tong,et al.  RAS: A Data‐Driven Rigidity‐Aware Skinning Model For 3D Facial Animation , 2020, Comput. Graph. Forum.

[52]  Dinesh K. Pai,et al.  Thin skin elastodynamics , 2013, ACM Trans. Graph..

[53]  James F. O'Brien,et al.  Fast simulation of mass-spring systems , 2013, ACM Trans. Graph..

[54]  Hongyi Xu,et al.  Signed distance fields for polygon soup meshes , 2014, Graphics Interface.

[55]  Hujun Bao,et al.  Space-time editing of elastic motion through material optimization and reduction , 2014, ACM Trans. Graph..

[56]  John P. Lewis,et al.  Facial retargeting with automatic range of motion alignment , 2017, ACM Trans. Graph..

[57]  Mario Botsch,et al.  Fast Projective Skinning , 2019, MIG.

[58]  KavanLadislav,et al.  Quasi-Newton Methods for Real-Time Simulation of Hyperelastic Materials , 2017 .

[59]  Mark Meyer,et al.  Harmonic coordinates for character articulation , 2007, ACM Trans. Graph..

[60]  Marc Alexa,et al.  As-rigid-as-possible surface modeling , 2007, Symposium on Geometry Processing.

[61]  Bruno Arnaldi,et al.  Dynamic skinning: adding real-time dynamic effects to an existing character animation , 2005, SCCG '05.

[62]  Jernej Barbic,et al.  Deformable object animation using reduced optimal control , 2009, ACM Trans. Graph..

[63]  Andrew P. Witkin,et al.  Spacetime constraints , 1988, SIGGRAPH.

[64]  Markus H. Gross,et al.  Consistent penetration depth estimation for deformable collision response , 2004, VMV.

[65]  Mark Meyer,et al.  Subspace condensation , 2015, ACM Trans. Graph..

[66]  Eftychios Sifakis,et al.  Efficient elasticity for character skinning with contact and collisions , 2011, ACM Trans. Graph..

[67]  Meekyoung Kim,et al.  Data-driven physics for human soft tissue animation , 2017, ACM Trans. Graph..

[68]  Alec Jacobson,et al.  Skinning: real-time shape deformation , 2014, SIGGRAPH ASIA Courses.