Bone mineralization pathways during the rapid growth of embryonic chicken long bones.

[1]  S. Weiner,et al.  Transport of membrane-bound mineral particles in blood vessels during chicken embryonic bone development. , 2016, Bone.

[2]  S. Weiner,et al.  On the pathway of mineral deposition in larval zebrafish caudal fin bone. , 2015, Bone.

[3]  R. Adams,et al.  Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone , 2014, Nature.

[4]  C. Holt,et al.  Mineralisation of soft and hard tissues and the stability of biofluids. , 2014, Journal of structural biology.

[5]  P. Fratzl,et al.  Simultaneous Raman Microspectroscopy and Fluorescence Imaging of Bone Mineralization in Living Zebrafish Larvae , 2014, Biophysical journal.

[6]  S. Weiner,et al.  Initial stages of calcium uptake and mineral deposition in sea urchin embryos , 2013, Proceedings of the National Academy of Sciences.

[7]  Z. Uni,et al.  Bone characteristics of late-term embryonic and hatchling broilers: bone development under extreme growth rate. , 2012, Poultry science.

[8]  M. Stevens,et al.  The role of intracellular calcium phosphate in osteoblast-mediated bone apatite formation , 2012, Proceedings of the National Academy of Sciences.

[9]  S. Weiner,et al.  Crystallization Pathways in Biomineralization , 2011 .

[10]  Z. Uni,et al.  Content and uptake of minerals in the yolk of broiler embryos during incubation and effect of nutrient enrichment. , 2011, Poultry science.

[11]  S. Weiner,et al.  Bone mineralization proceeds through intracellular calcium phosphate loaded vesicles: a cryo-electron microscopy study. , 2011, Journal of structural biology.

[12]  Z. Uni,et al.  The chick embryo yolk sac membrane expresses nutrient transporter and digestive enzyme genes. , 2011, Poultry science.

[13]  S. Weiner,et al.  Mapping amorphous calcium phosphate transformation into crystalline mineral from the cell to the bone in zebrafish fin rays , 2010, Proceedings of the National Academy of Sciences.

[14]  E. Golub Role of matrix vesicles in biomineralization. , 2009, Biochimica et biophysica acta.

[15]  Hiroaki Nakamura,et al.  The relationship between calcium accumulation in osteoclast mitochondrial granules and bone resorption. , 2009, Bone.

[16]  Nicole J. Crane,et al.  Raman spectroscopic evidence for octacalcium phosphate and other transient mineral species deposited during intramembranous mineralization. , 2006, Bone.

[17]  S. Subramaniam,et al.  Site-specific 3D imaging of cells and tissues with a dual beam microscope. , 2006, Journal of structural biology.

[18]  R. Terkeltaub,et al.  Concerted regulation of inorganic pyrophosphate and osteopontin by akp2, enpp1, and ank: an integrated model of the pathogenesis of mineralization disorders. , 2004, The American journal of pathology.

[19]  C. Wanner,et al.  Association of low fetuin-A (AHSG) concentrations in serum with cardiovascular mortality in patients on dialysis: a cross-sectional study , 2003, The Lancet.

[20]  John D. Currey,et al.  Bones: Structure and Mechanics , 2002 .

[21]  M. Schaffler,et al.  Prevention of fracture healing in rats by an inhibitor of angiogenesis. , 2001, Bone.

[22]  S. Teitelbaum,et al.  Bone resorption by osteoclasts. , 2000, Science.

[23]  P. Lehenkari,et al.  Removal of osteoclast bone resorption products by transcytosis. , 1997, Science.

[24]  M. Horton,et al.  Trafficking of matrix collagens through bone-resorbing osteoclasts. , 1997, Science.

[25]  R. Behringer,et al.  Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein , 1997, Nature.

[26]  W. Jahnen-Dechent,et al.  The serum protein alpha2-HS glycoprotein/fetuin inhibits apatite formation in vitro and in mineralizing calvaria cells. A possible role in mineralization and calcium homeostasis. , 1996, The Journal of biological chemistry.

[27]  V. Hamburger,et al.  A series of normal stages in the development of the chick embryo , 1992, Journal of morphology.

[28]  M. Pines,et al.  The role of the growth plate in longitudinal bone growth. , 1991, Poultry science.

[29]  C. Bregeon,et al.  Osteoclast Ultrastructure in Paget??s Disease , 1987 .

[30]  D. Dalgleish,et al.  Calculation of the ion equilibria in milk diffusate and comparison with experiment. , 1981, Analytical biochemistry.

[31]  C. Vleck,et al.  Patterns of Metabolism and Growth in Avian Embryos , 1980 .

[32]  B. Mckibbin,et al.  The biology of fracture healing in long bones. , 1978, The Journal of bone and joint surgery. British volume.

[33]  M. Glimcher,et al.  Electron microscopic observations of bone tissue prepared anhydrously in organic solvents. , 1977, Journal of ultrastructure research.

[34]  J. L. Matthews,et al.  Intracellular transport of calcium and its relationship to homeostasis and mineralization. An electron microscope study. , 1971, The American journal of medicine.

[35]  A L Lehninger,et al.  Mitochondria and calcium ion transport. , 1970, The Biochemical journal.

[36]  H. DeLuca,et al.  Calcium transport and the role of vitamin D. , 1969, Archives of biochemistry and biophysics.

[37]  M. Karnovsky,et al.  ELECTRON MICROSCOPY OF OSTEOCLASTS IN HEALING FRACTURES OF RAT BONE , 1961, The Journal of biophysical and biochemical cytology.

[38]  F. C. Mclean,et al.  THE FORMATION AND BEHAVIOR OF COLLOIDAL CALCIUM PHOSPHATE IN THE BLOOD , 1938 .

[39]  P. Kelly Pathways of Transport in Bone , 2011 .

[40]  H. Anderson,et al.  The role of matrix vesicles in growth plate development and biomineralization. , 2005, Frontiers in bioscience : a journal and virtual library.

[41]  B. Olsen,et al.  Bone development. , 2000, Annual review of cell and developmental biology.

[42]  V. Hamburger,et al.  A series of normal stages in the development of the chick embryo. 1951. , 2012, Developmental dynamics : an official publication of the American Association of Anatomists.

[43]  T. Hargest,et al.  Ultrastructure of matrix vesicles and mineral in unfixed embryonic bone , 1978 .

[44]  A. S. Posner,et al.  Properties of nucleating systems , 1978 .