Hierarchical convergence of an implicit double-net algorithm for nonexpansive semigroups and variational inequality problems

AbstractIn this paper, we show the hierarchical convergence of the following implicit double-net algorithm: xs,t=s[tf(xs,t)+(1-t)(xs,t-μAxs,t)]+(1-s)1λs∫0λsT(v)xs,tdν,∀s,t∈(0,1), where f is a ρ-contraction on a real Hilbert space H, A : H → H is an α-inverse strongly monotone mapping and S = {T(s)}s ≥ 0: H → H is a nonexpansive semi-group with the common fixed points set Fix(S) ≠ ∅, where Fix(S) denotes the set of fixed points of the mapping S, and, for each fixed t ∈ (0, 1), the net {xs, t} converges in norm as s → 0 to a common fixed point xt ∈ Fix(S) of {T(s)}s ≥ 0and, as t → 0, the net {xt} converges in norm to the solution x* of the following variational inequality: x*∈Fix(S);〈Ax*,x-x*〉≥0,∀x∈Fix(S).MSC(2000): 49J40; 47J20; 47H09; 65J15.

[1]  Paul-Emile Maingé,et al.  Towards viscosity approximations of hierarchical fixed-point problems , 2006 .

[2]  Wataru Takahashi,et al.  Strong Convergence to Common Fixed Points of Families of Nonexpansive Mappings , 1997 .

[3]  Hong-Kun Xu,et al.  VISCOSITY METHOD FOR HIERARCHICAL FIXED POINT APPROACH TO VARIATIONAL INEQUALITIES , 2010 .

[4]  Xiwen Lu,et al.  Hybrid methods for a class of monotone variational inequalities , 2009 .

[5]  Rudong Chen,et al.  Schemes for finding minimum-norm solutions of variational inequalities , 2010 .

[6]  Giuseppe Marino,et al.  KRASNOSELSKI–MANN ITERATION FOR HIERARCHICAL FIXED POINTS AND EQUILIBRIUM PROBLEM , 2009, Bulletin of the Australian Mathematical Society.

[7]  Abdellatif Moudafi,et al.  Krasnoselski–Mann iteration for hierarchical fixed-point problems , 2007 .

[8]  Gendai Gu,et al.  Strong Convergence Algorithms for Hierarchical Fixed Points Problems and Variational Inequalities , 2011, J. Appl. Math..

[9]  Mikhail Solodov,et al.  An Explicit Descent Method for Bilevel Convex Optimization , 2006 .

[10]  Paul-Emile Maingé,et al.  Strong convergence of an iterative method for hierarchical fixed point problems , 2007 .

[11]  Vittorio Colao,et al.  ON AN IMPLICIT HIERARCHICAL FIXED POINT APPROACH TO VARIATIONAL INEQUALITIES , 2009 .

[12]  Bethany L. Nicholson,et al.  Mathematical Programs with Equilibrium Constraints , 2021, Pyomo — Optimization Modeling in Python.

[13]  Yeol Je Cho,et al.  Iterative algorithms for hierarchical fixed points problems and variational inequalities , 2010, Math. Comput. Model..

[14]  Giuseppe Marino,et al.  Two-step iterative algorithms for hierarchical fixed point problems and variational inequality problems , 2009 .

[15]  Alexandre Cabot,et al.  Proximal Point Algorithm Controlled by a Slowly Vanishing Term: Applications to Hierarchical Minimization , 2005, SIAM J. Optim..

[16]  Giuseppe Marino,et al.  Viscosity methods for common solutions for equilibrium and hierarchical fixed point problems , 2011 .

[17]  W. A. Kirk,et al.  Topics in Metric Fixed Point Theory , 1990 .

[18]  Wataru Takahashi,et al.  Weak Convergence Theorems for Nonexpansive Mappings and Monotone Mappings , 2003 .

[19]  I. Yamada,et al.  Hybrid Steepest Descent Method for Variational Inequality Problem over the Fixed Point Set of Certain Quasi-nonexpansive Mappings , 2005 .

[20]  Yeong-Cheng Liou,et al.  Weak and strong convergence of Krasnoselski–Mann iteration for hierarchical fixed point problems , 2008 .

[21]  Felix E. Browder,et al.  Convergence of approximants to fixed points of nonexpansive nonlinear mappings in banach spaces , 1967 .

[22]  Giuseppe Marino,et al.  On a Two-Step Algorithm for Hierarchical Fixed Point Problems and Variational Inequalities , 2009 .

[23]  A. Petruşel,et al.  Krasnoselski-Mann Iterations for Hierarchical Fixed Point Problems for a Finite Family of Nonself Mappings in Banach Spaces , 2010 .