The rank reduction procedure of Egerváry
暂无分享,去创建一个
[1] D. Carlson,et al. Matrix Decompositions Involving the Schur Complement , 1975 .
[2] E. Spedicato,et al. Abs Projection Algorithms: Mathematical Techniques for Linear and Nonlinear Equations , 1989 .
[3] Aurél Galántai. Rank reduction and bordered inversion , 2001 .
[4] H. E. Goheen. On a Lemma of Stieltjes on Matrices , 1949 .
[5] Willem Hundsdorfer,et al. A Second-Order Rosenbrock Method Applied to Photochemical Dispersion Problems , 1999, SIAM J. Sci. Comput..
[6] Gene H. Golub,et al. A Rank-One Reduction Formula and Its Applications to Matrix Factorizations , 1995, SIAM Rev..
[7] E. Egerváry. On rank-diminishing operations and their applications to the solution of linear equations , 1960 .
[8] R. E. Cline,et al. The Rank of a Difference of Matrices and Associated Generalized Inverses , 1976 .
[9] Magyar Tudományos Akadémia. Nyelvtudományi Intézet,et al. A Magyar Tudományos Akadémia Matematikai Kutató Intézetének közleményei = Труды Математического института Академии наук Венгрии = Publications of the Mathematical Institute of the Hungarian Academy of Sciences , 1956 .
[10] T. N. E. Greville,et al. Solutions of the Matrix Equation $XAX = X$, and Relations between Oblique and Orthogonal Projectors , 1974 .
[11] W. J. Duncan,et al. Elementary matrices and some applications to dynamics and differential equations , 1939 .
[12] W. J. Duncan,et al. Elementary matrices and some applications to dynamics and differential equations , 1939 .
[13] P. Stanimirović. Self-correcting iterative methods for computing ${2}$-inverses , 2003 .
[14] Frazer. Elementary Matrices: Frontmatter , 1938 .
[15] T. Markham,et al. A Generalization of the Schur Complement by Means of the Moore–Penrose Inverse , 1974 .
[16] D. S. Tracy,et al. Generalized Inverse Matrices: With Applications to Statistics , 1971 .
[17] On some matrix equalities for generalized inverses with applications , 2009 .
[18] Diane Valérie Ouellette. Schur complements and statistics , 1981 .
[19] Aurél Galántai,et al. Rank reduction, factorization and conjugation , 2001 .
[20] G. Styan,et al. Equalities and Inequalities for Ranks of Matrices , 1974 .
[21] J. B. Rosen,et al. Lower Dimensional Representation of Text Data Based on Centroids and Least Squares , 2003 .
[22] L. Guttman. General theory and methods for matric factoring , 1944 .
[23] Alston S. Householder,et al. The Theory of Matrices in Numerical Analysis , 1964 .
[24] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[25] E. Egerváry. Über eine konstruktive Methode zur Reduktion einer Matrix auf die Jordansche Normalform , 1959 .
[26] G. Stewart. Conjugate direction methods for solving systems of linear equations , 1973 .
[27] Patrick L. Odell,et al. Matrix Theory: From Generalized Inverses to Jordan Form , 2007 .
[29] Y. Takane,et al. On the Wedderburn–Guttman theorem , 2005 .
[30] P. L. Odell,et al. Full Rank Factorization of Matrices , 1999 .
[31] K. S. Banerjee. Generalized Inverse of Matrices and Its Applications , 1973 .
[32] C. G. Broyden. On the numerical stability of Huang's and related methods , 1985 .
[33] E. Egerváry. Über eine Methode zur numerischen Lösung der Poissonschen Differenzengleichung für beliebige Gebiete , 1960 .
[34] On the necessary and sufficient condition for the extended Wedderburn–Guttman theorem , 2009 .
[35] Perturbation bounds for triangular and full rank factorizations , 2005 .
[36] Adi Ben-Israel,et al. Generalized inverses: theory and applications , 1974 .
[37] N. Urquhart. Generalized Inverse Matrices (with Applications to Statistics) , 1973 .
[38] A note on the generalized rank reduction , 2007 .
[39] D. Carlson. What are Schur complements, anyway? , 1986 .
[40] H. W. Turnbull,et al. Lectures on Matrices , 1934 .
[41] A. Galántai. Perturbations of Triangular Matrix Factorizations , 2003 .
[42] A. Galántai. Projectors and Projection Methods , 2003 .
[43] Louis Guttman,et al. Enlargement Methods for Computing the Inverse Matrix , 1946 .
[44] Gene H. Golub,et al. Rank Modifications of Semidefinite Matrices Associated with a Secant Update Formula , 1998, SIAM J. Matrix Anal. Appl..
[45] Michael A. Saunders,et al. Inertia-Controlling Methods for General Quadratic Programming , 1991, SIAM Rev..
[46] A. Forsgren. Inertia-controlling factorizations for optimization algorithms , 2002 .
[47] Willem J. Heiser,et al. Two Purposes for Matrix Factorization: A Historical Appraisal , 2000, SIAM Rev..
[48] R. Cottle. Manifestations of the Schur complement , 1974 .
[49] E. Egerváry. Über die Faktorisation von Matrizen und ihre Anwendung auf die Lösung von linearen Gleichungssystemen , 1955 .
[50] J. Bunch,et al. Direct Methods for Solving Symmetric Indefinite Systems of Linear Equations , 1971 .
[51] The Reverse Bordering Method , 1994 .
[52] E. Spedicato,et al. A class of direct methods for linear systems , 1984 .
[53] L. Guttman. A necessary and sufficient formula for matric factoring , 1957 .
[54] P. Rózsa,et al. On eigenvectors and adjoints of modified matrices , 1981 .