The Damped Crank–Nicolson Time-Marching Scheme for the Adaptive Solution of the Black–Scholes Equation
暂无分享,去创建一个
[1] Rolf Rannacher,et al. An Optimal Control Approach to A-Posteriori Error Estimation , 2001 .
[2] H. Bungartz,et al. Sparse grids , 2004, Acta Numerica.
[3] Kenneth Eriksson,et al. Adaptive finite element methods for parabolic problems IV: nonlinear problems , 1995 .
[4] M. Giles,et al. Convergence analysis of Crank-Nicolson and Rannacher time-marching , 2006 .
[5] M. Picasso. Adaptive finite elements for a linear parabolic problem , 1998 .
[6] Ekkehard W. Sachs,et al. Gradient Computation for Model Calibration with Pointwise Observations , 2013, Control and Optimization with PDE Constraints.
[7] Rolf Rannacher,et al. On the smoothing property of the crank-nicolson scheme , 1982 .
[8] Claes Johnson,et al. Computational Differential Equations , 1996 .
[9] Y. Kwok. Mathematical models of financial derivatives , 2008 .
[10] J. Hull. Options, Futures, and Other Derivatives , 1989 .
[11] W. Bangerth,et al. deal.II—A general-purpose object-oriented finite element library , 2007, TOMS.
[12] R. Rannacher. Finite element solution of diffusion problems with irregular data , 1984 .
[13] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.
[14] Timothy A. Davis,et al. Algorithm 832: UMFPACK V4.3---an unsymmetric-pattern multifrontal method , 2004, TOMS.
[15] Jens Lang,et al. Adaptive Multilevel Solution of Nonlinear Parabolic PDE Systems - Theory, Algorithm, and Applications , 2001, Lecture Notes in Computational Science and Engineering.
[16] Rolf Rannacher,et al. A Feed-Back Approach to Error Control in Finite Element Methods: Basic Analysis and Examples , 1996 .
[17] Ricardo H. Nochetto,et al. A posteriori error analysis for a class of integral equations and variational inequalities , 2010, Numerische Mathematik.
[18] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[19] Peter A. Forsyth,et al. Quadratic Convergence for Valuing American Options Using a Penalty Method , 2001, SIAM J. Sci. Comput..
[20] Antonino Zanette,et al. ADAPTIVE FINITE ELEMENT METHODS FOR LOCAL VOLATILITY EUROPEAN OPTION PRICING , 2004 .
[21] M. Larson,et al. Valuing Asian options using the finite element method and duality techniques , 2008 .
[22] A. Friedman. Partial Differential Equations of Parabolic Type , 1983 .
[23] Heribert Blum,et al. Weighted Error Estimates for Finite Element Solutions of Variational Inequalities , 2000, Computing.
[24] O. Lakkis,et al. Gradient recovery in adaptive finite-element methods for parabolic problems , 2009, 0905.2764.
[25] Kenneth Eriksson,et al. Adaptive finite element methods for parabolic problems. I.: a linear model problem , 1991 .
[26] Boris Vexler,et al. Adaptive Space-Time Finite Element Methods for Parabolic Optimization Problems , 2007, SIAM J. Control. Optim..
[27] F. Black,et al. The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.
[28] Jonas Persson,et al. Pricing European multi-asset options using a space-time adaptive FD-method , 2007 .
[29] Boris Vexler,et al. Adaptivity with Dynamic Meshes for Space-Time Finite Element Discretizations of Parabolic Equations , 2007, SIAM J. Sci. Comput..
[30] Thomas Richter. Parallel Multigrid Method for Adaptive Finite Elements with Application to 3D Flow Problems , 2005 .
[31] Jonas Persson,et al. Space-time adaptive finite difference method for European multi-asset options , 2007, Comput. Math. Appl..
[32] Rüdiger Verfürth,et al. A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .
[33] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[34] O. Pironneau,et al. Computational Methods for Option Pricing (Frontiers in Applied Mathematics) (Frontiers in Applied Mathematics 30) , 2005 .
[35] O. Pironneau,et al. Partial Differential Equations for Option Pricing , 2009 .
[36] Ricardo H. Nochetto,et al. A posteriori error estimates for the Crank-Nicolson method for parabolic equations , 2005, Math. Comput..
[37] RAUL KANGRO,et al. Far Field Boundary Conditions for Black-Scholes Equations , 2000, SIAM J. Numer. Anal..
[38] Yves Achdou,et al. Computational Methods for Option Pricing (Frontiers in Applied Mathematics) (Frontiers in Applied Mathematics 30) , 2005 .
[39] Endre Süli,et al. Adaptive finite element methods for differential equations , 2003, Lectures in mathematics.
[40] Roland Becker,et al. Efficient numerical solution of parabolic optimization problems by finite element methods , 2007, Optim. Methods Softw..
[41] Christoph Reisinger,et al. Numerische Methoden für hochdimensionale parabolische Gleichungen am Beispiel von Optionspreisaufgaben , 2004 .
[42] D. Duffy. A critique of the crank nicolson scheme strengths and weaknesses for financial instrument pricing , 2004 .
[43] Franz-Theo Suttmeier. Numerical solution of Variational Inequalities by Adaptive Finite Elements , 2008 .
[44] I. Babuska,et al. The finite element method and its reliability , 2001 .
[45] R. C. Merton,et al. Theory of Rational Option Pricing , 2015, World Scientific Reference on Contingent Claims Analysis in Corporate Finance.
[46] Andreas Griewank,et al. Achieving logarithmic growth of temporal and spatial complexity in reverse automatic differentiation , 1992 .
[47] Jia Feng,et al. An adaptive finite element algorithm with reliable and efficient error control for linear parabolic problems , 2004, Math. Comput..
[48] Peter A. Forsyth,et al. Convergence remedies for non-smooth payoffs in option pricing , 2003 .
[49] R. Verfürth,et al. Edge Residuals Dominate A Posteriori Error Estimates for Low Order Finite Element Methods , 1999 .
[50] R. Glowinski,et al. A Computational Approach to Controllability Issues for Flow-Related Models. (I): Pointwise Control of the Viscous Burgers Equation , 1996 .
[51] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[52] Ricardo H. Nochetto,et al. A posteriori error analysis for parabolic variational inequalities , 2007 .