The Damped Crank–Nicolson Time-Marching Scheme for the Adaptive Solution of the Black–Scholes Equation

This paper is concerned with the derivation of a residual-based a posteriori error estimator and mesh-adaptation strategies for the space-time finite element approximation of parabolic problems with irregular data. Typical applications arise in the field of mathematical finance, where the Black–Scholes equation is used for modeling the pricing of European options. A conforming finite element discretization in space is combined with second-order time discretization by a damped Crank–Nicolson scheme for coping with data irregularities in the model. The a posteriori error analysis is developed within the general framework of the dual weighted residual method for sensitivity-based, goal-oriented error estimation and mesh optimization. In particular, the correct form of the dual problem with damping is considered.

[1]  Rolf Rannacher,et al.  An Optimal Control Approach to A-Posteriori Error Estimation , 2001 .

[2]  H. Bungartz,et al.  Sparse grids , 2004, Acta Numerica.

[3]  Kenneth Eriksson,et al.  Adaptive finite element methods for parabolic problems IV: nonlinear problems , 1995 .

[4]  M. Giles,et al.  Convergence analysis of Crank-Nicolson and Rannacher time-marching , 2006 .

[5]  M. Picasso Adaptive finite elements for a linear parabolic problem , 1998 .

[6]  Ekkehard W. Sachs,et al.  Gradient Computation for Model Calibration with Pointwise Observations , 2013, Control and Optimization with PDE Constraints.

[7]  Rolf Rannacher,et al.  On the smoothing property of the crank-nicolson scheme , 1982 .

[8]  Claes Johnson,et al.  Computational Differential Equations , 1996 .

[9]  Y. Kwok Mathematical models of financial derivatives , 2008 .

[10]  J. Hull Options, Futures, and Other Derivatives , 1989 .

[11]  W. Bangerth,et al.  deal.II—A general-purpose object-oriented finite element library , 2007, TOMS.

[12]  R. Rannacher Finite element solution of diffusion problems with irregular data , 1984 .

[13]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[14]  Timothy A. Davis,et al.  Algorithm 832: UMFPACK V4.3---an unsymmetric-pattern multifrontal method , 2004, TOMS.

[15]  Jens Lang,et al.  Adaptive Multilevel Solution of Nonlinear Parabolic PDE Systems - Theory, Algorithm, and Applications , 2001, Lecture Notes in Computational Science and Engineering.

[16]  Rolf Rannacher,et al.  A Feed-Back Approach to Error Control in Finite Element Methods: Basic Analysis and Examples , 1996 .

[17]  Ricardo H. Nochetto,et al.  A posteriori error analysis for a class of integral equations and variational inequalities , 2010, Numerische Mathematik.

[18]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[19]  Peter A. Forsyth,et al.  Quadratic Convergence for Valuing American Options Using a Penalty Method , 2001, SIAM J. Sci. Comput..

[20]  Antonino Zanette,et al.  ADAPTIVE FINITE ELEMENT METHODS FOR LOCAL VOLATILITY EUROPEAN OPTION PRICING , 2004 .

[21]  M. Larson,et al.  Valuing Asian options using the finite element method and duality techniques , 2008 .

[22]  A. Friedman Partial Differential Equations of Parabolic Type , 1983 .

[23]  Heribert Blum,et al.  Weighted Error Estimates for Finite Element Solutions of Variational Inequalities , 2000, Computing.

[24]  O. Lakkis,et al.  Gradient recovery in adaptive finite-element methods for parabolic problems , 2009, 0905.2764.

[25]  Kenneth Eriksson,et al.  Adaptive finite element methods for parabolic problems. I.: a linear model problem , 1991 .

[26]  Boris Vexler,et al.  Adaptive Space-Time Finite Element Methods for Parabolic Optimization Problems , 2007, SIAM J. Control. Optim..

[27]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[28]  Jonas Persson,et al.  Pricing European multi-asset options using a space-time adaptive FD-method , 2007 .

[29]  Boris Vexler,et al.  Adaptivity with Dynamic Meshes for Space-Time Finite Element Discretizations of Parabolic Equations , 2007, SIAM J. Sci. Comput..

[30]  Thomas Richter Parallel Multigrid Method for Adaptive Finite Elements with Application to 3D Flow Problems , 2005 .

[31]  Jonas Persson,et al.  Space-time adaptive finite difference method for European multi-asset options , 2007, Comput. Math. Appl..

[32]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[33]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[34]  O. Pironneau,et al.  Computational Methods for Option Pricing (Frontiers in Applied Mathematics) (Frontiers in Applied Mathematics 30) , 2005 .

[35]  O. Pironneau,et al.  Partial Differential Equations for Option Pricing , 2009 .

[36]  Ricardo H. Nochetto,et al.  A posteriori error estimates for the Crank-Nicolson method for parabolic equations , 2005, Math. Comput..

[37]  RAUL KANGRO,et al.  Far Field Boundary Conditions for Black-Scholes Equations , 2000, SIAM J. Numer. Anal..

[38]  Yves Achdou,et al.  Computational Methods for Option Pricing (Frontiers in Applied Mathematics) (Frontiers in Applied Mathematics 30) , 2005 .

[39]  Endre Süli,et al.  Adaptive finite element methods for differential equations , 2003, Lectures in mathematics.

[40]  Roland Becker,et al.  Efficient numerical solution of parabolic optimization problems by finite element methods , 2007, Optim. Methods Softw..

[41]  Christoph Reisinger,et al.  Numerische Methoden für hochdimensionale parabolische Gleichungen am Beispiel von Optionspreisaufgaben , 2004 .

[42]  D. Duffy A critique of the crank nicolson scheme strengths and weaknesses for financial instrument pricing , 2004 .

[43]  Franz-Theo Suttmeier Numerical solution of Variational Inequalities by Adaptive Finite Elements , 2008 .

[44]  I. Babuska,et al.  The finite element method and its reliability , 2001 .

[45]  R. C. Merton,et al.  Theory of Rational Option Pricing , 2015, World Scientific Reference on Contingent Claims Analysis in Corporate Finance.

[46]  Andreas Griewank,et al.  Achieving logarithmic growth of temporal and spatial complexity in reverse automatic differentiation , 1992 .

[47]  Jia Feng,et al.  An adaptive finite element algorithm with reliable and efficient error control for linear parabolic problems , 2004, Math. Comput..

[48]  Peter A. Forsyth,et al.  Convergence remedies for non-smooth payoffs in option pricing , 2003 .

[49]  R. Verfürth,et al.  Edge Residuals Dominate A Posteriori Error Estimates for Low Order Finite Element Methods , 1999 .

[50]  R. Glowinski,et al.  A Computational Approach to Controllability Issues for Flow-Related Models. (I): Pointwise Control of the Viscous Burgers Equation , 1996 .

[51]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[52]  Ricardo H. Nochetto,et al.  A posteriori error analysis for parabolic variational inequalities , 2007 .