Shakedown analysis: Comparison between models with the linear unlimited, linear limited and non-linear kinematic hardening
暂无分享,去创建一个
[1] W. T. Koiter. General theorems for elastic plastic solids , 1960 .
[2] T. Charlton. Progress in Solid Mechanics , 1962, Nature.
[3] G. de Saxcé,et al. A comparison between analytical calculations of the shakedown load by the bipotential approach and step-by-step computations for elastoplastic materials with nonlinear kinematic hardening , 2006 .
[5] Dieter Weichert,et al. Inelastic behaviour of structures under variable repeated loads : direct analysis methods , 2002 .
[6] J. Chaboche,et al. Mechanics of Solid Materials , 1990 .
[7] C. O. Frederick,et al. A mathematical representation of the multiaxial Bauschinger effect , 2007 .
[8] Céline Bouby. Adaptation élastoplastique de structures sous chargements variables avec règle d'écrouissage cinématique non linéaire et non associée , 2006 .
[9] S. Caddemi,et al. Shakedown problems for material models with internal variables , 1991 .
[10] G. Bodovillé. A kinematic elastic nonshakedown theorem for implicit standard materials , 2002 .
[11] Quoc Son Nguyen,et al. On shakedown analysis in hardening plasticity , 2003 .
[12] William Prager,et al. Introduction to Plasticity , 1960 .
[13] W. Fenchel. On Conjugate Convex Functions , 1949, Canadian Journal of Mathematics.
[14] D. Weichert,et al. The numerical assessment of elastic-plastic sheets under variable mechanical and thermal loads using a simplified two-surface yield condition , 1988 .
[15] Ali Chaaba,et al. A new approach to shakedown analysis for non-standard elastoplastic material by the bipotential , 2003 .