Shakedown analysis: Comparison between models with the linear unlimited, linear limited and non-linear kinematic hardening

Abstract In this paper, shakedown analysis for plasticity models with hardening is considered by using the framework of implicit standard materials. It is shown that the concept of bipotential allows not only to retrieve some classical results in associated plasticity but also to consider non-associated laws e.g. the non-linear kinematic hardening rule. Furthermore, the comparison of the shakedown load for the three kinds of hardening on an example shows substantial differences and thus the importance of considering the non-linear kinematic hardening in shakedown analysis.

[1]  W. T. Koiter General theorems for elastic plastic solids , 1960 .

[2]  T. Charlton Progress in Solid Mechanics , 1962, Nature.

[3]  G. de Saxcé,et al.  A comparison between analytical calculations of the shakedown load by the bipotential approach and step-by-step computations for elastoplastic materials with nonlinear kinematic hardening , 2006 .

[5]  Dieter Weichert,et al.  Inelastic behaviour of structures under variable repeated loads : direct analysis methods , 2002 .

[6]  J. Chaboche,et al.  Mechanics of Solid Materials , 1990 .

[7]  C. O. Frederick,et al.  A mathematical representation of the multiaxial Bauschinger effect , 2007 .

[8]  Céline Bouby Adaptation élastoplastique de structures sous chargements variables avec règle d'écrouissage cinématique non linéaire et non associée , 2006 .

[9]  S. Caddemi,et al.  Shakedown problems for material models with internal variables , 1991 .

[10]  G. Bodovillé A kinematic elastic nonshakedown theorem for implicit standard materials , 2002 .

[11]  Quoc Son Nguyen,et al.  On shakedown analysis in hardening plasticity , 2003 .

[12]  William Prager,et al.  Introduction to Plasticity , 1960 .

[13]  W. Fenchel On Conjugate Convex Functions , 1949, Canadian Journal of Mathematics.

[14]  D. Weichert,et al.  The numerical assessment of elastic-plastic sheets under variable mechanical and thermal loads using a simplified two-surface yield condition , 1988 .

[15]  Ali Chaaba,et al.  A new approach to shakedown analysis for non-standard elastoplastic material by the bipotential , 2003 .