Pinctada Maxima Pearl Shells as a Promising Bone Graft Material in the World of Dentistry
暂无分享,去创建一个
H. Achmad | S. Oktawati | S. Mappangara | M. Chandha | Sitti Raoda Juanita Ramadhan | Muhammad Yudin | Gustivanny Dwipa Asri
[1] V. Balaji,et al. Bone grafts in periodontics , 2020 .
[2] T. Aghaloo,et al. Biomimetic Enhancement of Bone Graft Reconstruction. , 2019, Oral and maxillofacial surgery clinics of North America.
[3] S. Rahayu,et al. Pemanfaatan Limbah Cangkang Kerang Mutiara (Pinctada Maxima) Sebagai Sumber Hidroksiapatit , 2018, Jurnal Pendidikan Fisika dan Teknologi.
[4] J. C. de Sá,et al. Bone substitute made from a Brazilian oyster shell functions as a fast stimulator for bone-forming cells in an animal model , 2018, PloS one.
[5] Basril Abbas,et al. Sintesis dan Karakterisasi Pasta Injectable Bone Substitute Iradiasi Berbasis Hidroksiapatit , 2018 .
[6] Nikolaj Gadegaard,et al. Nacre Topography Produces Higher Crystallinity in Bone than Chemically Induced Osteogenesis. , 2017, ACS nano.
[7] M. Glogauer,et al. Natural graft tissues and synthetic biomaterials for periodontal and alveolar bone reconstructive applications: a review , 2017, Biomaterials Research.
[8] Alexander Schramm,et al. Autogenous bone grafts in oral implantology—is it still a “gold standard”? A consecutive review of 279 patients with 456 clinical procedures , 2017, International Journal of Implant Dentistry.
[9] D. Fawcett,et al. Synthesis of a bone like composite material derived from waste pearl oyster shells for potential bone tissue bioengineering applications , 2017 .
[10] Ibrahim T. Ozbolat,et al. Design strategies and applications of nacre-based biomaterials. , 2017, Acta biomaterialia.
[11] A. Amin,et al. SINTESIS DAN KARAKTERISASI KOMPOSIT HIDROKSIAPATIT DARI TULANG IKAN LAMURU (Sardilnella Longiceps)-KITOSAN SEBAGAI BONE FILLER , 2017 .
[12] P. Gillet,et al. Nacre, a natural, multi-use, and timely biomaterial for bone graft substitution. , 2017, Journal of biomedical materials research. Part A.
[13] W. Teughels,et al. Primary prevention of periodontitis: managing gingivitis. , 2015, Journal of clinical periodontology.
[14] A. Setyawan,et al. Indonesia's biodiversity: the loss and management efforts to ensure the sovereignty of the nation , 2015 .
[15] Han-Sung Jung,et al. Osteogenic Potency of Nacre on Human Mesenchymal Stem Cells , 2015, Molecules and cells.
[16] Yongwon Choi,et al. Biology of the RANKL–RANK–OPG System in Immunity, Bone, and Beyond , 2014, Front. Immunol..
[17] Wing-Fu Lai,et al. Evolving Marine Biomimetics for Regenerative Dentistry , 2014, Marine drugs.
[18] G. Schmidmaier,et al. Stimulation of Bone Healing by Sustained Bone Morphogenetic Protein 2 (BMP-2) Delivery , 2014, International journal of molecular sciences.
[19] Prasanna Kumar,et al. Bone grafts in dentistry , 2013, Journal of pharmacy & bioallied sciences.
[20] Shivaraj B Warad,et al. Bone Morphogenetic Proteins: Periodontal Regeneration , 2013, North American journal of medical sciences.
[21] Athanasios Mantalaris,et al. Biological therapy of bone defects: the immunology of bone allo-transplantation , 2010, Expert opinion on biological therapy.
[22] Bambang Sunendar Purwasasmita,et al. SINTESIS DAN KARAKTERISASI SERBUK HIDROKSIAPATIT SKALA SUB-MIKRON MENGGUNAKAN METODE PRESIPITASI , 2008 .
[23] L. Xing,et al. Functions of RANKL/RANK/OPG in bone modeling and remodeling. , 2008, Archives of biochemistry and biophysics.
[24] R. Lizarelli,et al. Effect of low‐level laser therapy on bone repair: Histological study in rats , 2007, Lasers in surgery and medicine.
[25] T. Bauer,et al. Bone graft substitutes , 2007, Skeletal Radiology.
[26] Wei-Ping Qian,et al. B cells and T cells are critical for the preservation of bone homeostasis and attainment of peak bone mass in vivo. , 2007, Blood.
[27] S. Vukicevic,et al. Bone morphogenetic proteins: from developmental signals to tissue regeneration , 2007, EMBO reports.
[28] X. Chatzistavrou,et al. Investigation of the Hydroxyapatite Growth on Bioactive Glass Surface , 2007 .
[29] M. Chiapasco,et al. Augmentation procedures for the rehabilitation of deficient edentulous ridges with oral implants. , 2006, Clinical oral implants research.
[30] M. Lamghari,et al. Conservation of signal molecules involved in biomineralisation control in calcifying matrices of bone and shell , 2004 .
[31] L. Hofbauer,et al. Clinical implications of the osteoprotegerin/RANKL/RANK system for bone and vascular diseases. , 2004, JAMA.
[32] Buddy D Ratner,et al. Nacre surface transformation to hydroxyapatite in a phosphate buffer solution. , 2003, Biomaterials.
[33] C. Milet,et al. The water-soluble matrix fraction from the nacre of Pinctada maxima produces earlier mineralization of MC3T3-E1 mouse pre-osteoblasts. , 2003, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.
[34] M. Barthélémy,et al. Effect of water-soluble matrix fraction extracted from the nacre of Pinctada maxima on the alkaline phosphatase activity of cultured fibroblasts. , 2000, The Journal of experimental zoology.
[35] Frédéric Marin,et al. A marriage of bone and nacre , 1998, Nature.
[36] T. Oppé,et al. Vitamin D deficiency. , 1979, British medical journal.