Pinctada Maxima Pearl Shells as a Promising Bone Graft Material in the World of Dentistry

BACKGROUND: Pinctada maxima pearl shell contains inorganic and organic materials that have a bone-like basic structure that facilitates bone remodeling. AIM: This study aimed to describe the effectiveness of Pinctada maxima pearl shells as bone graft material in the world of dentistry using an animal model. METHODS: Research uses Pinctada maxima pearl shell that was processed into hydroxyapatite Pinctada maxima (HPM) powder. Chemical and surface characteristics of HPM were performed with X-ray fluorescence (XRF), Fourier transform infra-red (FTIR), and X-ray diffraction (XRD), respectively. Thirty male guinea pigs were randomly assigned into three groups: Negative control (NC), positive control, and HPM. After 14–21 days of observation, guinea pigs were sacrificed. Bone formation was seen through immunohistochemical examination of osteoprotegerin (OPG) and bone morphogenetic protein (BMP2) expression. Data were analyzed through Shapiro wills and analysis of variance with a significance level of 5%. RESULTS: There was a high expression of OPG and BMP2 on days 14–21 in the HPM group when compared to the NC group with a significance level of 5%. CONCLUSION: HPM powder can be used as a promising bone graft material in the world of dentistry.

[1]  V. Balaji,et al.  Bone grafts in periodontics , 2020 .

[2]  T. Aghaloo,et al.  Biomimetic Enhancement of Bone Graft Reconstruction. , 2019, Oral and maxillofacial surgery clinics of North America.

[3]  S. Rahayu,et al.  Pemanfaatan Limbah Cangkang Kerang Mutiara (Pinctada Maxima) Sebagai Sumber Hidroksiapatit , 2018, Jurnal Pendidikan Fisika dan Teknologi.

[4]  J. C. de Sá,et al.  Bone substitute made from a Brazilian oyster shell functions as a fast stimulator for bone-forming cells in an animal model , 2018, PloS one.

[5]  Basril Abbas,et al.  Sintesis dan Karakterisasi Pasta Injectable Bone Substitute Iradiasi Berbasis Hidroksiapatit , 2018 .

[6]  Nikolaj Gadegaard,et al.  Nacre Topography Produces Higher Crystallinity in Bone than Chemically Induced Osteogenesis. , 2017, ACS nano.

[7]  M. Glogauer,et al.  Natural graft tissues and synthetic biomaterials for periodontal and alveolar bone reconstructive applications: a review , 2017, Biomaterials Research.

[8]  Alexander Schramm,et al.  Autogenous bone grafts in oral implantology—is it still a “gold standard”? A consecutive review of 279 patients with 456 clinical procedures , 2017, International Journal of Implant Dentistry.

[9]  D. Fawcett,et al.  Synthesis of a bone like composite material derived from waste pearl oyster shells for potential bone tissue bioengineering applications , 2017 .

[10]  Ibrahim T. Ozbolat,et al.  Design strategies and applications of nacre-based biomaterials. , 2017, Acta biomaterialia.

[11]  A. Amin,et al.  SINTESIS DAN KARAKTERISASI KOMPOSIT HIDROKSIAPATIT DARI TULANG IKAN LAMURU (Sardilnella Longiceps)-KITOSAN SEBAGAI BONE FILLER , 2017 .

[12]  P. Gillet,et al.  Nacre, a natural, multi-use, and timely biomaterial for bone graft substitution. , 2017, Journal of biomedical materials research. Part A.

[13]  W. Teughels,et al.  Primary prevention of periodontitis: managing gingivitis. , 2015, Journal of clinical periodontology.

[14]  A. Setyawan,et al.  Indonesia's biodiversity: the loss and management efforts to ensure the sovereignty of the nation , 2015 .

[15]  Han-Sung Jung,et al.  Osteogenic Potency of Nacre on Human Mesenchymal Stem Cells , 2015, Molecules and cells.

[16]  Yongwon Choi,et al.  Biology of the RANKL–RANK–OPG System in Immunity, Bone, and Beyond , 2014, Front. Immunol..

[17]  Wing-Fu Lai,et al.  Evolving Marine Biomimetics for Regenerative Dentistry , 2014, Marine drugs.

[18]  G. Schmidmaier,et al.  Stimulation of Bone Healing by Sustained Bone Morphogenetic Protein 2 (BMP-2) Delivery , 2014, International journal of molecular sciences.

[19]  Prasanna Kumar,et al.  Bone grafts in dentistry , 2013, Journal of pharmacy & bioallied sciences.

[20]  Shivaraj B Warad,et al.  Bone Morphogenetic Proteins: Periodontal Regeneration , 2013, North American journal of medical sciences.

[21]  Athanasios Mantalaris,et al.  Biological therapy of bone defects: the immunology of bone allo-transplantation , 2010, Expert opinion on biological therapy.

[22]  Bambang Sunendar Purwasasmita,et al.  SINTESIS DAN KARAKTERISASI SERBUK HIDROKSIAPATIT SKALA SUB-MIKRON MENGGUNAKAN METODE PRESIPITASI , 2008 .

[23]  L. Xing,et al.  Functions of RANKL/RANK/OPG in bone modeling and remodeling. , 2008, Archives of biochemistry and biophysics.

[24]  R. Lizarelli,et al.  Effect of low‐level laser therapy on bone repair: Histological study in rats , 2007, Lasers in surgery and medicine.

[25]  T. Bauer,et al.  Bone graft substitutes , 2007, Skeletal Radiology.

[26]  Wei-Ping Qian,et al.  B cells and T cells are critical for the preservation of bone homeostasis and attainment of peak bone mass in vivo. , 2007, Blood.

[27]  S. Vukicevic,et al.  Bone morphogenetic proteins: from developmental signals to tissue regeneration , 2007, EMBO reports.

[28]  X. Chatzistavrou,et al.  Investigation of the Hydroxyapatite Growth on Bioactive Glass Surface , 2007 .

[29]  M. Chiapasco,et al.  Augmentation procedures for the rehabilitation of deficient edentulous ridges with oral implants. , 2006, Clinical oral implants research.

[30]  M. Lamghari,et al.  Conservation of signal molecules involved in biomineralisation control in calcifying matrices of bone and shell , 2004 .

[31]  L. Hofbauer,et al.  Clinical implications of the osteoprotegerin/RANKL/RANK system for bone and vascular diseases. , 2004, JAMA.

[32]  Buddy D Ratner,et al.  Nacre surface transformation to hydroxyapatite in a phosphate buffer solution. , 2003, Biomaterials.

[33]  C. Milet,et al.  The water-soluble matrix fraction from the nacre of Pinctada maxima produces earlier mineralization of MC3T3-E1 mouse pre-osteoblasts. , 2003, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.

[34]  M. Barthélémy,et al.  Effect of water-soluble matrix fraction extracted from the nacre of Pinctada maxima on the alkaline phosphatase activity of cultured fibroblasts. , 2000, The Journal of experimental zoology.

[35]  Frédéric Marin,et al.  A marriage of bone and nacre , 1998, Nature.

[36]  T. Oppé,et al.  Vitamin D deficiency. , 1979, British medical journal.