HDR VolVis: high dynamic range volume visualization

In this paper, we present an interactive high dynamic range volume visualization framework (HDR VolVis) for visualizing volumetric data with both high spatial and intensity resolutions. Volumes with high dynamic range values require high precision computing during the rendering process to preserve data precision. Furthermore, it is desirable to render high resolution volumes with low opacity values to reveal detailed internal structures, which also requires high precision compositing. High precision rendering will result in a high precision intermediate image (also known as high dynamic range image). Simply rounding up pixel values to regular display scales will result in loss of computed details. Our method performs high precision compositing followed by dynamic tone mapping to preserve details on regular display devices. Rendering high precision volume data requires corresponding resolution in the transfer function. To assist the users in designing a high resolution transfer function on a limited resolution display device, we propose a novel transfer function specification interface with nonlinear magnification of the density range and logarithmic scaling of the color/opacity range. By leveraging modern commodity graphics hardware, multiresolution rendering techniques and out-of-core acceleration, our system can effectively produce an interactive visualization of large volume data, such as 2.048/sup 3/.

[1]  Rui Wang,et al.  Interactive time-dependent tone mapping using programmable graphics hardware , 2003, Rendering Techniques.

[2]  Richard Szeliski,et al.  High dynamic range video , 2003, ACM Trans. Graph..

[3]  Hans-Peter Seidel,et al.  Perception-motivated high dynamic range video encoding , 2004, SIGGRAPH 2004.

[4]  Alexei A. Efros,et al.  Fast bilateral filtering for the display of high-dynamic-range images , 2002 .

[5]  Holly E. Rushmeier,et al.  Tone reproduction for realistic images , 1993, IEEE Computer Graphics and Applications.

[6]  Xiaoru Yuan,et al.  High dynamic range volume visualization , 2005, VIS 05. IEEE Visualization, 2005..

[7]  Paul R. Woodward,et al.  Turbulence in compressible flows , 1999 .

[8]  P. Woodward,et al.  Measures of intermittency in driven supersonic flows. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  Lee Westover,et al.  Interactive volume rendering , 1989, VVS '89.

[10]  Werner Purgathofer,et al.  Tone Reproduction and Physically Based Spectral Rendering , 2002, Eurographics.

[11]  George Furnas,et al.  The FISHEYE view: a new look at structured les , 1986, CHI 1986.

[12]  Greg Ward II.5 – REAL PIXELS , 1991 .

[13]  Erik Reinhard,et al.  High Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting (The Morgan Kaufmann Series in Computer Graphics) , 2005 .

[14]  Hanspeter Pfister,et al.  The VolumePro real-time ray-casting system , 1999, SIGGRAPH.

[15]  Torsten Möller,et al.  Transfer Functions on a Logarithmic Scale for Volume Rendering , 2004, Graphics Interface.

[16]  Edward H. Adelson,et al.  Compressing and companding high dynamic range images with subband architectures , 2005, ACM Trans. Graph..

[17]  Hans-Peter Seidel,et al.  Perceptual evaluation of tone mapping operators , 2003, SIGGRAPH '03.

[18]  M. Bauer,et al.  Interactive volume on standard PC graphics hardware using multi-textures and multi-stage rasterization , 2000, Workshop on Graphics Hardware.

[19]  Wolfgang Heidrich,et al.  Volume rendering for high dynamic range displays , 2005, Fourth International Workshop on Volume Graphics, 2005..

[20]  Wolfgang Heidrich,et al.  High dynamic range display systems , 2004, ACM Trans. Graph..

[21]  Erik Reinhard,et al.  Photographic tone reproduction for digital images , 2002, ACM Trans. Graph..

[22]  G. W. Furnas,et al.  Generalized fisheye views , 1986, CHI '86.

[23]  Karol Myszkowski,et al.  Adaptive Logarithmic Mapping For Displaying High Contrast Scenes , 2003, Comput. Graph. Forum.

[24]  Alan Chalmers,et al.  Evaluation of tone mapping operators using a High Dynamic Range display , 2005, ACM Trans. Graph..

[25]  Dani Lischinski,et al.  Gradient Domain High Dynamic Range Compression , 2023 .

[26]  Joe Michael Kniss,et al.  Multidimensional Transfer Functions for Interactive Volume Rendering , 2002, IEEE Trans. Vis. Comput. Graph..

[27]  SugermanJeremy,et al.  Brook for GPUs , 2004 .

[28]  Uwe Rauschenbach The rectangular fish eye view as an efficient method for the transmission and display of large images , 1999, Proceedings 1999 International Conference on Image Processing (Cat. 99CH36348).

[29]  P. Woodward,et al.  The numerical simulation of two-dimensional fluid flow with strong shocks , 1984 .

[30]  Bernd Hamann,et al.  Multiresolution techniques for interactive texture-based volume visualization , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[31]  Ramana Rao,et al.  A focus+context technique based on hyperbolic geometry for visualizing large hierarchies , 1995, CHI '95.

[32]  Randima Fernando,et al.  GPU Gems: Programming Techniques, Tips and Tricks for Real-Time Graphics , 2004 .

[33]  Donald P. Greenberg,et al.  A multiscale model of adaptation and spatial vision for realistic image display , 1998, SIGGRAPH.

[34]  Alan Chalmers,et al.  Evaluation of tone mapping operators using a High Dynamic Range display , 2005, SIGGRAPH 2005.

[35]  Thomas Ertl,et al.  Level-of-Detail Volume Rendering via 3D Textures , 2000, 2000 IEEE Symposium on Volume Visualization (VV 2000).

[36]  Paul R. Woodward,et al.  3-D Simulations of Turbulent Compressible Convection , 2000 .

[37]  P. Woodward Piecewise-parabolic methods for astrophysical fluid dynamics , 1986 .

[38]  Brian Cabral,et al.  Accelerated volume rendering and tomographic reconstruction using texture mapping hardware , 1994, VVS '94.

[39]  Christine D. Piatko,et al.  A visibility matching tone reproduction operator for high dynamic range scenes , 1997, SIGGRAPH '97.

[40]  M. Werman,et al.  Gradient Domain High Dynamic Range Compression , 2002 .

[41]  Alvy Ray Smith,et al.  Color gamut transform pairs , 1978, SIGGRAPH.

[42]  Paul R. Woodward,et al.  Three-dimensional Simulations of Turbulent Compressible Convection , 2000 .

[43]  Tamara Munzner,et al.  H3: laying out large directed graphs in 3D hyperbolic space , 1997, Proceedings of VIZ '97: Visualization Conference, Information Visualization Symposium and Parallel Rendering Symposium.

[44]  Greg Turk,et al.  LCIS: a boundary hierarchy for detail-preserving contrast reduction , 1999, SIGGRAPH.

[45]  Pat Hanrahan,et al.  Brook for GPUs: stream computing on graphics hardware , 2004, ACM Trans. Graph..

[46]  Steven P. Callahan,et al.  A Survey of GPU-Based Volume Rendering of Unstructured Grids , 2005, RITA.

[47]  Ben Shneiderman,et al.  Readings in information visualization - using vision to think , 1999 .

[48]  James Arvo,et al.  Graphics Gems II , 1994 .

[49]  Jitendra Malik,et al.  Recovering high dynamic range radiance maps from photographs , 1997, SIGGRAPH '08.