Efficient Multi-Objective Optimization Using 2-Population Cooperative Coevolution

We propose a 2-population cooperative coevolutionary optimization method that can efficiently solve multi-objective optimization problems as it successfully combines positive traits from classic multi-objective evolutionary algorithms and from newer optimization approaches that explore the concept of differential evolution. A key part of the algorithm lies in the proposed dual fitness sharing mechanism that is able to smoothly transfer information between the two coevolved populations without negatively impacting the independent evolutionary process behavior that characterizes each population.

[1]  Edwin Lughofer,et al.  A Hybrid Soft Computing Approach for Optimizing Design Parameters of Electrical Drives , 2012, SOCO.

[2]  Qingfu Zhang,et al.  Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-II , 2009, IEEE Transactions on Evolutionary Computation.

[3]  Bogdan Filipic,et al.  DEMO: Differential Evolution for Multiobjective Optimization , 2005, EMO.

[4]  Jacek M. Zurada,et al.  Artificial Intelligence and Soft Computing, 10th International Conference, ICAISC 2010, Zakopane, Poland, June 13-17, 2010, Part I , 2010, International Conference on Artificial Intelligence and Soft Computing.

[5]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[6]  Edwin Lughofer,et al.  On the Performance of Master-Slave Parallelization Methods for Multi-Objective Evolutionary Algorithms , 2013, ICAISC.

[7]  R. Lyndon While,et al.  A review of multiobjective test problems and a scalable test problem toolkit , 2006, IEEE Transactions on Evolutionary Computation.

[8]  Jouni Lampinen,et al.  Performance assessment of Generalized Differential Evolution 3 with a given set of constrained multi-objective test problems , 2009, 2009 IEEE Congress on Evolutionary Computation.

[9]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[10]  Kalyanmoy Deb,et al.  Simulated Binary Crossover for Continuous Search Space , 1995, Complex Syst..

[11]  Marco Laumanns,et al.  SPEA2: Improving the Strength Pareto Evolutionary Algorithm For Multiobjective Optimization , 2002 .

[12]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems (Genetic and Evolutionary Computation) , 2006 .

[13]  M. Fleischer,et al.  The Measure of Pareto Optima , 2003, EMO.

[14]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[15]  Jouni Lampinen,et al.  GDE3: the third evolution step of generalized differential evolution , 2005, 2005 IEEE Congress on Evolutionary Computation.

[16]  Mark Fleischer,et al.  The measure of pareto optima: Applications to multi-objective metaheuristics , 2003 .

[17]  Frank Kursawe,et al.  A Variant of Evolution Strategies for Vector Optimization , 1990, PPSN.

[18]  D. Zaharie A Comparative Analysis of Crossover Variants in Differential Evolution , 2007 .

[19]  Marco Laumanns,et al.  Scalable multi-objective optimization test problems , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[20]  R. Storn,et al.  Differential Evolution , 2004 .

[21]  Kalyanmoy Deb,et al.  A combined genetic adaptive search (GeneAS) for engineering design , 1996 .