Stigmergic gene transfer and emergence of universal coding

We consider a simple information‐theoretic model for evolutionary dynamics approaching the “coding threshold,” where the capacity to symbolically represent nucleic acid sequences emerges in response to a change in environmental conditions. We study the conditions when a coupling between the dynamics of a “proto‐cell” and its proto‐symbolic representation becomes beneficial in terms of preserving the proto‐cell's information in a noisy environment. In particular, we are interested in understanding the behavior at the “error threshold” level, which, in our case, turns out to be a whole “error interval.” The useful coupling is accompanied by self‐organization of internal processing, i.e., an increase in complexity within the evolving system. Second, we study whether and how different proto‐cells can stigmergically share such information via a joint encoding, even if they have slightly different individual dynamics. Implications for the emergence of biological genetic code are discussed.

[1]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[2]  Albert Y. Zomaya,et al.  Assortativeness and information in scale-free networks , 2009 .

[3]  Биология Error threshold (Evolution) , 2010 .

[4]  M. Eigen Selforganization of matter and the evolution of biological macromolecules , 1971, Naturwissenschaften.

[5]  Rob R. de Ruyter van Steveninck,et al.  The metabolic cost of neural information , 1998, Nature Neuroscience.

[6]  C. Woese A New Biology for a New Century , 2004, Microbiology and Molecular Biology Reviews.

[7]  George E. Fox,et al.  The concept of cellular evolution , 1977, Journal of Molecular Evolution.

[8]  J. Crutchfield Information and Its Metric , 1990 .

[9]  Claude E. Shannon,et al.  The mathematical theory of communication , 1950 .

[10]  I. Prigogine,et al.  From Being to Becoming: Time and Complexity in the Physical Sciences , 1982 .

[11]  Christoph Endres,et al.  Introduction to Artificial Life , 2000, Künstliche Intell..

[12]  Chris Melhuish,et al.  Stigmergy, Self-Organization, and Sorting in Collective Robotics , 1999, Artificial Life.

[13]  Chrystopher L. Nehaniv,et al.  Relevant information in optimized persistence vs. progeny strategies , 2006 .

[14]  U. Ferrara,et al.  THE ORGANIC CODES An introduction to semantic biology , 2003 .

[15]  Rob R. de Ruyter van Steveninck,et al.  Coding Efficiency and the Metabolic Cost of Sensory and Neural Information , 2000, Information Theory and the Brain.

[16]  C. Woese The universal ancestor. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[17]  K. Kaplan H. Haken, Synergetics. An Introduction. Nonequilibrium Phase Transitions and Self-Organization in Physics, Chemistry, and Biology (2nd Edition). XI + 355 S., 152 Abb. Berlin—Heidelberg—New York 1978. Springer-Verlag. DM 66,00 , 1980 .

[18]  D. Hofstadter,et al.  Godel, Escher, Bach: An Eternal Golden Braid , 1979 .

[19]  Guy Theraulaz,et al.  Phase-ordering kinetics of cemetery organization in ants , 1998 .

[20]  Albert Y. Zomaya,et al.  Information-Cloning of Scale-Free Networks , 2007, ECAL.

[21]  H. Haken Synergetics: an Introduction, Nonequilibrium Phase Transitions and Self-organization in Physics, Chemistry, and Biology , 1977 .

[22]  Daniel Polani,et al.  Emergence of Genetic Coding: An Information-Theoretic Model , 2007, ECAL.

[23]  Mikhail Prokopenko,et al.  An information-theoretic primer on complexity, self-organization, and emergence , 2009, Complex..

[24]  N. Goldenfeld,et al.  Collective evolution and the genetic code. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Albert Y. Zomaya,et al.  Local information transfer as a spatiotemporal filter for complex systems. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  A. Wagner Robustness and Evolvability in Living Systems , 2005 .

[27]  Daniel Polani,et al.  Modelling Stigmergic Gene Transfer , 2008, ALIFE.

[28]  Chrystopher L. Nehaniv,et al.  Representations of Space and Time in the Maximization of Information Flow in the Perception-Action Loop , 2007, Neural Computation.

[29]  V. Huber-Dyson D.R. Hofstadter Gödel, Escher, Bach: an Eternal Golden Braid (New York: Basic Books Inc.1979). , 1981 .

[30]  Mikhail Prokopenko,et al.  An information-theoretic primer on complexity, self-organization, and emergence , 2009 .

[31]  Naftali Tishby,et al.  Efficient representation as a design principle for neural coding and computation , 2006, 2006 IEEE International Symposium on Information Theory.

[32]  J. Todd,et al.  INVESTIGATIONS , 1984, The Lancet.

[33]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[34]  A. Lloyd THE COUPLED LOGISTIC MAP : A SIMPLE MODEL FOR THE EFFECTS OF SPATIAL HETEROGENEITY ON POPULATION DYNAMICS , 1995 .

[35]  Hedley C. Morris,et al.  Nonlinear structures in physical systems : pattern formation, chaos, and waves : proceedings of the Second Woodward Conference, San Jose State University, November 17-18, 1989 , 1990 .

[36]  P.-P. Grasse La reconstruction du nid et les coordinations interindividuelles chezBellicositermes natalensis etCubitermes sp. la théorie de la stigmergie: Essai d'interprétation du comportement des termites constructeurs , 1959, Insectes Sociaux.

[37]  B. K. Davis Evolution of the genetic code. , 1999, Progress in biophysics and molecular biology.

[38]  Mikhail Prokopenko,et al.  Evolving Spatiotemporal Coordination in a Modular Robotic System , 2006, SAB.